首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of pretreatments as well as of rhodium precursor and of the support over the morphology of Rh nanoparticles were investigated by Fourier transform infrared (FT-IR) spectroscopy of adsorbed CO. Over a Rh/alumina catalyst, both metallic Rh particles, characterized by IR bands in the range 2070-2060 cm-1 and 1820-1850 cm-1, and highly dispersed rhodium species, characterized by symmetric and asymmetric stretching bands of RhI(CO)2 gem-dicarbonyl species, are present. Their relative amount changes following pretreatments with gaseous mixtures, representative of the catalytic partial oxidation (CPO) reaction process. The Rh metal particle fraction decreases with respect to the Rh highly dispersed fraction in the order CO approximately CO/H2 > CH4/H2O, CH4/O2 > CH4 > H2. The metal particle dimensions decrease in the order CH4/O2 > H2 > CH4/H2O > CO > CO/H2. Grafting from a carbonyl rhodium complex also increases the amount and the dimensions of Rh0 particles at the catalyst surface. Increasing the ratio (extended rhodium metal particles/highly dispersed Rh species) allows a shorter conditioning process. The surface reconstruction phenomena going on during catalytic activity are related to this effect.  相似文献   

2.
In this paper are described the main characteristics of the plasma spraying process of alumina deposits, i.e., the temperature and flow field of the plasma jets obtained with the classical spraying torches, the injection of the particles into the plasma jet, the particle surface temperature and velocities in the plasma (measured for calibrated alumina particles), and the coating generation. The measurements on the alumina particles are compared with the predictions of a mathematical model. The experimental and computed particle velocities are in rather good agreement. However, this is not the case for the particle surface temperature. Possible reasons for the discrepancy are proposed (influence of the carrier gas, thermophoretic forces, and poor penetration of the particles into the plasma core even for an injection velocity twice that of the optimal calculated one, as shown by recent measurements). Finally the correlations between the particle velocities and surface temperature, and the properties of the alumina coating (porosity, crystal structure, mechanical properties) are studied.  相似文献   

3.
利用溶胶-凝胶技术制备了ZrO2-Al2O3复合氧化物,考察了不同的投料比时复合氧化物的物理化学性质,比较了不同浓度酸腐蚀前后氧化物微球的比表面积、孔径、表面酸碱性及复合氧化物中氧化锆、氧化铝摩尔比等物理化学参数的变化。  相似文献   

4.
Rh nanoparticles (mean size 10 and 15 nm), prepared by epitaxial growth on NaCl surfaces, were covered with layers of crystalline vanadium oxide (mean thickness 1.5 and 25 nm) by reactive deposition in 10(-2) mbar O2. The 1.5 nm film was further stabilized with a coating layer of 25 nm amorphous alumina. The so-obtained Rh/vanadia films, containing vanadium in the V3+ and V2+ state, were treated in 1 bar O2 at 673 K for 1 h and thereafter reduced in 1 bar H2 at increased temperatures, particularly between 723 and 873 K. The structural and morphological changes were followed by (high-resolution) transmission electron microscopy and selected area diffraction. Oxidation at 673 K transforms the purely vanadia-supported samples into Rh/V2O5, while in the alumina-supported films containing only small amounts of VOx, the formation of topotactic V2O3 is observed. The formation of Rh-V alloys during the subsequent reduction is strongly determined by the intimate contact and the structural and orientational relationship between Rh particles and the surrounding VOx phase. Reduction above 473 K transforms the support into substoichiometric vanadium oxides of composition VO and V2O. Analysis of high-resolution images and diffraction patterns reveals the presence of different alloy phases after reduction with increasing T (from 573 up to 823 K). In the alumina-supported film (low V/Rh ratio) the epitaxial alignment between the Rh particles and the surrounding V2O3 phase apparently favours the primary formation of defined alloys of type V3Rh and VRh3, followed by VRh at higher temperature. On the contrary, mainly V3Rh5 is formed in the purely VOx-supported Rh/films, due to different epitaxial relations in the initial state. Possible pathways of alloy formation are discussed.  相似文献   

5.
The characteristic CO vibrational frequency of supported monocarbonyl complexes Rh(I)CO, at 2014 and 1984 cm(-1) on dealuminated Y zeolite and alumina, respectively, is lower than the frequencies of both the symmetric and the antisymmetric CO normal modes of the corresponding stable supported Rh(I) dicarbonyls. The CO mode with a measured frequency between those of the symmetric and antisymmetric CO frequencies of the dicarbonyls, previously assigned to rhodium monocarbonyl, is reassigned to mixed carbonyl dihydrogen complexes Rh(H(2))(CO) or Rh(H)(2)(CO). This reassignment is based on a critical analysis of reported experimental data, supplemented by quantum chemical calculations.  相似文献   

6.
CO(2) is a major contaminant of renewable H(2) derived from biomass fermentation. The effect of the presence of CO(2) on the activity of alumina-supported Pt and Rh catalysts used for the hydrogenation of toluene at 348 K was investigated. The use of operando diffuse reflectance spectroscopy (DRIFTS) was crucial in unravelling the changes in the nature and abundance of species adsorbed at the sample surface and relating those to the changes of catalytic activity. Rhodium supported on alumina was only partly deactivated by the introduction of CO(2) during the hydrogenation of toluene, contrary to the case of Pt/alumina. Rh was only partially covered by carbonyl species derived from CO(2) and it was shown that toluene could successfully compete with some of the linearly adsorbed carbonyls for adsorption. The alumina support stored many CO(2)-derived adsorbates (carbonates, hydrogenocarbonates, carboxylates) that could spill over to the metal and form carbonyl species even after the removal of CO(2) from the feed.  相似文献   

7.
Adsorption of brush copolymers, bearing sulfonate groups and polyethylene glycol segments, on to alumina particles in suspension in water has been investigated. Study of the adsorption isotherms revealed that the copolymers displayed a strong affinity for the surface of the alumina regardless of the fraction of ionic groups on the polymer. For poly(ethylene glycol) content greater than 50%, the adsorption isotherms revealed an initial adsorption plateau followed by a second one. The shape of the adsorption isotherms was interpreted in terms of the polymer configuration at the solid-to-liquid interface. The effects of the pH and the ionic force on adsorption were studied and connected to the effects of interaction between chain segments at the surface of the alumina particles. Changes in the electrokinetic properties of the alumina particles after addition of the copolymers were investigated by following the zeta potential of particles as a function of pH. In the presence of the copolymer continuous shift of the isoelectric point IEP to a more acidic values was observed. Beyond a certain concentration the zeta potential remained negative regardless of the pH.  相似文献   

8.
The effects of ceria and zirconia on the structure–function properties of supported rhodium catalysts (1.6 and 4 wt % Rh/γ‐Al2O3) during CO exposure are described. Ceria and zirconia are introduced through two preparation methods: 1) ceria is deposited on γ‐Al2O3 from [Ce(acac)3] and rhodium metal is subsequently added, and 2) through the controlled surface modification (CSM) technique, which involves the decomposition of [M(acac)x] (M=Ce, x=3; M=Zr, x=4) on Rh/γ‐Al2O3. The structure–function correlations of ceria and/or zirconia‐doped rhodium catalysts are investigated by diffuse reflectance infrared Fourier‐transform spectroscopy/energy‐dispersive extended X‐ray absorption spectroscopy/mass spectrometry (DRIFTS/EDE/MS) under time‐resolved, in situ conditions. CeOx and ZrO2 facilitate the protection of Rh particles against extensive oxidation in air and CO. Larger Rh core particles of ceriated and zirconiated Rh catalysts prepared by CSM are observed and compared with Rh/γ‐Al2O3 samples, whereas supported Rh particles are easily disrupted by CO forming mononuclear Rh geminal dicarbonyl species. DRIFTS results indicate that, through the interaction of CO with ceriated Rh particles, a significantly larger amount of linear CO species form; this suggests the predominance of a metallic Rh phase.  相似文献   

9.
Alumina-supported vanadium particles were prepared under ultrahigh vacuum (UHV) conditions and characterized with respect to their structural and CO adsorption properties. As supporting oxide, we used a thin, well-ordered alumina film grown on NiAl(110). This allows the application of scanning tunneling microscopy (STM), infrared reflection-absorption spectroscopy (IRAS), and X-ray photoelectron spectroscopy (XPS) without charging effects. Vanadium evaporation under UHV conditions leads to the growth of nanometer-sized particles which strongly interact with the alumina support. At very low vanadium coverages, these particles are partially incorporated into the alumina film and get oxidized through the contact to alumina. Low-temperature CO adsorption in this coverage regime permits the preparation of isolated vanadium carbonyls, of which we have identified mono-, di-, and tricarbonyls of the V(CO)(y)() type. A charge-frequency relationship was set up which allows one to quantify the extent of charge transfer from vanadium to alumina. It turns out that this charge transfer depends on the V nucleation site.  相似文献   

10.
This work investigated colloidal properties such as the zeta-potential, the electrophoretic mobilities and the wetting behaviour of alumina dispersed in non-aqueous media. Non-aqueous dispersions of alumina were prepared in the solvent N-methyl-2-pyrrolidinone (NMP). The wetting behaviour of alumina in NMP was characterized by the powder contact angle method and the Wilhemy plate method. The behaviour of the dispersion should provide information for the development of a substrate-induced coagulation (SIC) coating process of nano-sized alumina in non-aqeous media. SIC is a dip-coating process that coats pretreated but chemically different surfaces with nano-sized particles. It was found that the anionic surfactant dioctyl sulfosuccinate (AOT) had no stabilizing effect on alumina dispersed in NMP.  相似文献   

11.
Commonly used for purification, alumina and silica are found to contaminate ionic liquids with particles; these particles cannot be removed easily and can have a non-negligible impact on the electrochemical, spectroscopic and physical properties of an ionic liquid, including its nucleation and crystallisation kinetics.  相似文献   

12.
 利用阳极氧化方法制备了具有规整的可控孔洞尺寸的多孔Al2O3 膜,并以此模拟实际的催化剂载体制备了负载银催化剂. 采用扫描电镜、能量分散谱、透射电镜、X射线衍射和X射线光电子能谱等手段,研究了多孔阳极氧化铝的孔洞大小对负载的银粒子团聚的影响. 结果表明,载体孔洞尺寸对银粒子团聚可能起到限制作用,而且这种限制作用随载体孔洞尺寸增大而减小. 当载体的孔洞尺寸约为50 nm时,随温度升高银粒子的团聚和生长都不明显; 当载体的孔洞尺寸约为200 nm时,随温度升高银粒子发生一定程度的团聚和生长,但孔洞尺寸的限制作用仍存在. 这种载体尺寸的限制作用可以有效地阻止催化剂活性组分的团聚.  相似文献   

13.
The influence of fine-disperse iron oxide particles on the structure of alumina fibers prepared via the template synthesis has been studied. The template (fibers of bleached cotton cellulose) has been impregnated with mixed aqueous dispersions of aluminum and iron(III) hydroxides prepared via the sol–gel route. Thermal treatment of the precursor has afforded alumina ceramic fibers with average diameter of 3–10 µm containing uniformly distributed iron(III) oxide nanoparticles at the surface. Increase of the iron(III) oxide nanoparticles concentration has deteriorated the texture properties of the product.  相似文献   

14.
Natural rubber composites with alumina of different particle sizes (28 nm nano particles, 200 nm active particles and > 1000 nm raw alumina) were prepared by the usual rubber processing technique. Epoxidized natural rubber (ENR) was used in the composites as compatibilizer. Cure characteristics and mechanical properties of all composites were analyzed. The values of minimum rheometric torque (ML), maximum rheometric torque (MH) and torque difference (MH – ML) increased. Maximum enhancement was observed for the nano-filled composites. It endorses the view that nano alumina reveals highest interaction with natural rubber in presence of ENR. Scorch time and optimum cure time values for nano-composites were highest among all types of composites. Vulcanization reaction for the sulfur curing system of the composites was found to follow first order rate kinetics. Specific rate constant decreased with decreasing particle size in composites. Crosslink densities of composite-vulcanizates showed increasing trend with decreasing particle size of alumina. Mechanical properties of the composite vulcanizates increased with decreasing particle size of alumina - nano composites exhibiting much higher mechanical strength. Results of oxidative resistance reveal that particle size of alumina in composite vulcanizates has a significant impact on aging behavior.  相似文献   

15.
Rhodium on alumina (5% Rh) has been found to be a good catalyst for the hydrogenation of aromatic amines under atmospheric pressure at room temperature in water.  相似文献   

16.
Colloidal dispersions of rhodium (Rh) nanoparticles have been synthesized by the reduction of Rh ions (III) in high-temperature and high-pressure water, ethanol, or water-ethanol mixture under the existence of the protective polymer of poly(N-vinyl-2-pyrrolidone). The possibility of the regulation of the particle size and size distribution has been tested under several solvents at various temperatures and pressures. At 473 K and 25 MPa, particularly, concentrated colloidal dispersions of Rh particles of 2.5+/-0.5 nm were synthesized from the ionic solution of ethanol ([Rh]=15 mM) within a few seconds. Dilute colloidal dispersions of Rh particles were also synthesized from the dilute ionic solution ([Rh]=1.5 mM) with a diameter of 2.0+/-0.4 nm. From the water solution, Rh particles tended to form aggregates, especially for the lower concentration solution. In the case of solutions in water and ethanol mixture, the average diameter of Rh particles tended to be larger than in ethanol solution, and their distribution became broad.  相似文献   

17.
以造纸黑液中的碱木质素为主要原料,通过磺化和缩聚反应制备了磺化木质素高分子聚合物SBAL.TEM和1H-NMR测试结果表明SBAL是以木质素的疏水骨架为中心,以磺酸基和羧基组成亲水性侧链的球形结构.GPC测试结果表明其重均分子量达到了24880 Da,是碱木质素的7.38倍,电位滴定测试结果表明,其磺化度达到2.70 mmol.g-1.通过流变曲线、吸附等温线、zeta电位、XPS测试研究了其对氧化铝在水中的分散机理及其吸附特性.掺SBAL的氧化铝浆体,在pH=3~12范围内SBAL对其具有良好的分散降黏作用.溶液pH对SBAL的分子构型和吸附特性有较大的影响,随pH增加,SBAL中磺酸基、羧基和酚羟基逐渐电离,分子的伸展程度逐渐增大.随pH增加,SBAL在氧化铝上的吸附质量减少,吸附层由致密逐渐变得疏松,pH小于等电点时以静电吸附为主,pH大于等电点时以非静电的特性吸附为主.当SBAL的用量小于临界值(0.5 wt%)时,其在氧化铝表面形成单分子层吸附,在颗粒间起到静电排斥作用;当用量大于临界值时,其在颗粒表面形成聚集体吸附而起到空间位阻作用.  相似文献   

18.
Alumina particles were incorporated in poly(dimethyl siloxane) (PDMS) matrix in company with multiwalled carbon nanotube (MWCNT) for improving the thermal and electrical conductivities. The concentration of MWCNT was increased from 0 to 10 wt% to PDMS at fixed amounts of alumina (200 and 300 wt% to PDMS). Thermal conductivity of PDMS composites was increased with the increasing amount of MWCNT and the excellent dispersibility of the incorporated pristine MWCNT was achieved. Thermal and electrical conductivities of the composites were increased with the increasing concentration of the alumina because the alumina particles help disperse MWCNT within the PDMS matrix due to the ball milling effect during compounding. The properties of the alumina and MWCNT incorporated PDMS composites were investigated in terms of the curing characteristics, electrical conductivity, and thermal conductivity. The MWCNT/alumina incorporated composite showed the high electrical conductivity to the level of the semiconductor.  相似文献   

19.
雷红  卢海参 《无机化学学报》2007,23(10):1763-1766
为提高α-Al2O3磨粒在水基介质中的分散稳定性,采用接枝聚合方法制备了Al2O3-g-聚丙烯酰胺复合粒子。采用FTIR、XPS、TOF-SIMS、激光粒度仪、SEM、沉降试验等对氧化铝复合粒子结构及分散性能等进行了表征。结果表明,聚丙烯酰胺以化学键形式接枝到Al2O3粒子表面,形成聚丙烯酰胺为壳,Al2O3为核的复合磨粒;接枝改性后的Al2O3粒子分散性明显提高,并且其分散性与Al2O3表面接枝量密切相关。  相似文献   

20.
The foremost material that closely mimics the mineral part of the bone tissue, and is therefore suitable for bone replacement, is nano-hydroxyapatite (nHAp) which exhibits low fracture toughness, and can be used for load-bearing scaffolds in biomedical applications. Therefore, for improved biomechanical features, composite materials are developed. This work focuses on the influence and contribution of bioactive alumina and nHAp on the biopolymer, i.e., gelatin matrix for the fabrication of load-bearing bone replacement composites. Incorporation of bioceramics alumina at the strengthening phase is essential for the improvement of mechanical properties for biomedical applications. The porosity of scaffolds varied from 79 to 85%. Fourier transform infrared (FTIR) and X-ray powder diffraction (XRD) analyses showed the presence of molecular interactions and chemical linkages between gelatin matrix, alumina, and nHAp particles. The compressive strength of alumina-reinforced nanocomposites scaffolds is three times higher than those of nHAp/gelatin. The elemental composition of the chemically synthesized nHAp particles was determined by SEM, FTIR, and XRD analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号