首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
FAE爆炸抛撒后云雾液滴尺寸的测量   总被引:7,自引:0,他引:7  
利用Dobbins激光散射的方法建立了一套测量FAE爆炸抛撒后远场云雾液滴尺寸的测量系统,研究了FAE爆炸抛撒后液滴Sauter平均直径在不同空间位置随时间的变化过程。得出的散射光强以及Sauter平均直径随时间的变化表明,云雾区的液滴Sauter平均直径在固定点随时间的增加呈减小的趋势,而云雾区的宽度和云雾区液滴的Sauter平均直径则随距爆心距离的增加而增加。  相似文献   

2.
液体在气流作用下的喷射抛撒过程是流体力学研究中令人感兴趣的重要领域,笔者采用改进后的激波管实现了激波作用下液体的喷射抛撒,并通过阴影照相和激光散射法分别对液体的抛撒状态和抛撒液滴的直径进行了测量,研究表明,在喷射过程中,流场中固定位置所测得的液滴Sarter平均直径随时间的发展而逐渐减小,在开始时时刻液滴直三小较快而最终渐趋平缓;在对不同抛撒距离雾化场的测量中发现,没位置测得的颗粒最大直 隧测得位  相似文献   

3.
对具有轴向初始速度即竖直下抛液体燃料的爆炸抛撒云雾形成过程进行了数值研究。近场的数据来自丁珏等的工作,以此数据作为远场初始参数。远场是燃料液滴与空气、燃料蒸汽、不同尺寸的液滴颗粒组成的多相体系之间的相互作用的过程。液滴的直径比较小,把液滴看成连续介质,且相互作用只考虑液滴的蒸发、破碎、碰撞聚合。轴向初速为0(静爆)时计算结果与实验结果相吻合。这说明本模型可以模拟爆炸抛撒云雾的形成过程,进而可以预估高速运动下云雾的形成过程。用以上模型计算了竖直下抛初速为100m/s、装填5kgPO的FAE装置的爆炸抛撒过程。所得的结果表明,100m/s的初速将影响云雾的最终形状及云雾内部的浓度分布。  相似文献   

4.
离散型湍流多相流动的研究进展和需求   总被引:2,自引:0,他引:2  
周力行 《力学进展》2008,38(5):610-622
离散型多相流动,指气体-颗粒(气-固)、液体-颗粒(液-固)、液体-气泡、气体-液雾以及气泡-液体-颗粒等两相或三相流动.这种类型的多相流动广泛存在于能源, 航天和航空, 化工和冶金,交通运输, 水利, 核能等领域.本文阐述了离散型多相流动的国内外基础研究,包括颗粒/液滴/气泡在流场中受流体动力作用力的研究, 颗粒-颗粒,液滴-液滴,气泡-气泡之间以及颗粒/液滴和壁面之间碰撞和聚集规律的研究,颗粒-气体和气泡-液体湍流相互作用的研究, 和数值模拟的研究,包括多相流动的雷诺平均模拟、大涡模拟和直接数值模拟的研究进展.最后, 归纳了目前尚待研究的需求.   相似文献   

5.
以正戊烷云雾为研究对象,进行预点火湍流对云雾爆炸参数影响规律的实验研究。首先通过不同气动压力进行喷雾,获得平均特征直径(SMD)分别为 21.21、14.51 和 8.64 μm 的正戊烷云雾,并得到不同气动压力预点火的湍流均方根速度;随后在 20 L 云雾爆炸参数测量系统中实验获得预点火湍流对正戊烷云雾蒸发速率、爆炸超压峰值、压力上升速率和火焰传播延迟时间的影响。结果表明:(1) 对于圆柱形罐体对称式双喷头分散系统,流场环境可近似认定为零平均速率湍流场;在0.4、0.6和0.8 MPa的气动压力喷雾50 ms的分散作用下,在100~250 ms内,湍流均方根速度在1.0~6.2 m/s范围内,平均湍流积分尺度在40~72 mm范围内,湍流最大湍流尺度的雷诺数在8 000~15 000范围内,柯尔莫哥洛夫微尺度在0.03~0.1 mm范围内;(2) 对于较小的液滴群,随湍流强度的增加,液滴群的蒸发速率有更为明显的提升;(3) 对比云雾三种SMD,粒径8.64 μm的超压峰值与最大压力上升速率随湍流强度增长趋势更显著,并发生爆炸强度显著提升现象,即存在“转变区域”(transition range)现象;(4) 对于SMD在8~22 μm范围内,湍流均方根速度处于1.0~4.0 m/s时为火焰传播延迟时间的低增长阶段,湍流均方根速度处于4.0~6.2 m/s时为火焰传播延迟时间的高增长阶段,湍流强度与火焰传播延迟时间在相应的两个湍流强度阶段范围内呈线性增长。  相似文献   

6.
激光多普勒测速技术在气液两相流中的应用   总被引:1,自引:0,他引:1  
周明  李文采 《力学学报》1991,23(1):46-52
本文采用激光颗粒动态分析仪(PDA)测量了钢包底部喷吹气液两相流中气泡的直径和气泡上升速度的分布;采用激光多普勒测速仪(LDA)测量了气液两相区和液体单相循环区液体速度场的分布。测量结果表明:气泡在脱离喷嘴上浮一定距离后,其大小基本保持不变;在气液两相区中,气泡速度和液体速度的分布均服从高斯分布;液体在单相区作循环流动,在侧壁与底部交接处,存在液体流动的“死区”。  相似文献   

7.
采用烟迹技术在立式激波管中测定了环氧丙烷、90#汽油、硝酸异丙酯、庚烷、癸烷、戊二烯等几种燃料气液两相云雾爆轰的胞格尺寸。结果表明,云雾爆轰的胞格尺寸随当量比的变化呈U形曲线关系,且最小胞格尺寸并不是对应于等化学当量比而是偏向于富燃料一侧,这与气相爆轰的结论是一致的。胞格尺寸随起爆能的增加而减小。当起爆能达到一定值后,胞格尺寸变化不明显,若起爆能继续增加,在通常的胞格内出现精细结构。云雾爆轰波胞格长度与宽度的比值比气相爆轰小。另外,根据烟迹记录分析了云雾爆轰作用机制,认为液滴的碎解、汽化过程以及燃烧区前导是控制气液两相云雾爆轰的主要因素。  相似文献   

8.
液体环轴对称抛洒首次破碎的理论分析   总被引:1,自引:0,他引:1  
对于水和无水乙醇环形轴对称抛洒实验的首次破碎结果的分析表明,在给定实验条件下,液体密度大约是气体的1000倍,液体首次破碎的过程分2个阶段:首先,界面不稳定性非线性发展,液体尖钉在惯性力和空气阻力的作用下,拉伸变细变长;然后在射流不稳定性的作用下,断裂成液体珠串。这个理论分析给出的首次破碎的平均液体直径与实验结果基本一致。理论分析表明,无水乙醇破碎液滴的平均直径比水液滴小,是无水乙醇表面张力值仅为水的1/3的一个必然结果。  相似文献   

9.
用高速相机拍摄了液滴以不同速度冲击液面的运动过程,测量了冲击过程中典型时刻液坑、中心液柱、次生液滴和次生液柱的几何尺寸,对这些几何尺寸的最大值与韦伯数(We)的关系进行了回归分析,结果表明:空间上,液坑的最大垂直深度、液坑的最大水平长度、中心液柱的最大高度、次生液滴等效直径和次生液柱的最大高度随We数增加呈线性增加;次生液滴等效直径是初始液滴等效直径的1.2~2倍;当200We220时,次生液滴冲击液面没有次生液柱生成,当360We713时,有次生液柱形成,220≤We≤360为过渡区;时间上,We数越大,运动过程中液坑的大小和中心液柱的高度变化越快,液坑和中心液柱持续时间越长,中心液柱达到最大高度的时刻以及破碎生成次生液滴的时刻也越晚。  相似文献   

10.
液体的爆炸抛撒特征   总被引:3,自引:0,他引:3  
针对液体爆炸抛撒过程设计了实验装置,利用高速摄像仪进行记录。通过研究不同中心装药量和 填充液体的抛撒过程,发现在壳体破裂后,液体沿裂缝处向外飞散。药量较小时,液体分散成树枝状形态,然 后破碎成液滴;药量较大时,则形成液体环状区。对于不同粘度的液体,环状区分别由小液滴及已雾化、汽化 的液体,或大液滴、液体丝及液膜等组成,抛撒过程中其宽度越来越大,大液滴、液体丝及液膜等也逐渐破碎成 细小的液滴。  相似文献   

11.
A correlation was derived for the Sauter mean diameter of fragments produced in the bag and multimode drop breakup regimes for drops having Ohnesorge numbers less than 0.1. Development of the correlation focused on the growth of capillary instabilities on the toroidal rim seen during the final stages of bag breakup. The model linked the time scale for drop breakup and the time scale associated with growth of the unstable waves. The instability scale was approximated from the results of linear stability theory for capillary waves on liquid cylinders. The drop breakup scale was based on correlations available in the literature for drops subjected to a rapid (relative to drop deformation time scales) rise in relative velocity. Though development focused on bag breakup, the resultant expression was also shown to correlate the multimode regime data reasonably well.  相似文献   

12.
Secondary atomization   总被引:14,自引:0,他引:14  
When a drop is subjected to a surrounding dispersed phase that is moving at an initial relative velocity, aerodynamic forces will cause it to deform and fragment. This is referred to as secondary atomization. In this paper, the abundant literature on secondary atomization experimental methods, breakup morphology, breakup times, fragment size and velocity distributions, and modeling efforts is reviewed and discussed. Focus is placed on experimental and numerical results which clarify the physical processes that lead to breakup. From this, a consistent theory is presented which explains the observed behavior. It is concluded that viscous shear plays little role in the breakup of liquid drops in a gaseous environment. Correlations are given which will be useful to the designer, and a number of areas are highlighted where more work is needed. This material is based upon work supported under a National Science Foundation Graduate Research Fellowship.  相似文献   

13.
In this paper we present a numerical model for the coarse-grid simulation of turbulent liquid jet breakup using an Eulerian–Lagrangian coupling. To picture the unresolved droplet formation near the liquid jet interface in the case of coarse grids we considered a theoretical model to describe the unresolved flow instabilities leading to turbulent breakup. These entrained droplets are then represented by an Eulerian–Lagrangian hybrid concept. On the one hand, we used a volume of fluid method (VOF) to characterize the global spreading and the initiation of droplet formation; one the other hand, Lagrangian droplets are released at the liquid–gas interface according to the theoretical model balancing consolidating and disruptive energies. Here, a numerical coupling was required between Eulerian liquid core and Lagrangian droplets using mass and momentum source terms. The presented methodology was tested for different liquid jets in Rayleigh, wind-induced and atomization regimes and validated against literature data. This comparison reveals fairly good qualitative agreement in the cases of jet spreading, jet instability and jet breakup as well as relatively accurate size distribution and Sauter mean diameter (SMD) of the droplets. Furthermore, the model was able to capture the regime transitions from Rayleigh instability to atomization appropriately. Finally, the presented sub-grid model predicts the effect of the gas-phase pressure on the droplet sizes very well.  相似文献   

14.
杨磊  韩肇元 《实验力学》2005,20(2):186-192
液体轴对称抛撒的实验研究是以云雾爆轰武器的研制为背景的。为了研究轴向气流作用下液体轴对称抛撒二次破碎所形成的雾化场特性,本文利用两台激波管并对之加以改造,成功地在实验室实现了轴向气流作用下液体的轴对称抛撒。为了研究其雾化场的远场特性,本文利用激光粒子测量仪获得了在不同实验工况和不同位置下的雾化场SMD分布曲线。实验数据表明,由于轴向气流速度的增加,液体破碎的Weber数得到了提高,导致二次破碎初期雾化场的SMD随之减小;随着抛撒驱动压力的提高,二次破碎初期雾化场的SMD也随之减小;在同一工况下,雾化场SMD随着测量位置与喷口距离的增加而变大。  相似文献   

15.
Detailed simulations of aerated stirred tanks with shear-thinning power law liquids are presented. The lattice-Boltzmann scheme was used to discretize the filtered conservation equations of the liquid phase. The motion of bubbles was tracked based on the Euler–Lagrange approach with a bubble cluster concept. The collision, breakup and coalescence of bubbles were modeled as stochastic events. The predicted flow field of a single-phase stirred tank with shear-thinning power law liquid shows reasonable agreement with experimental data. For aerated systems, qualitatively similar gas holdup distribution was achieved when comparing the predicted result with experiments. Using the proposed modeling approach, it was found that a change in rheology alters the number mean diameter, Sauter diameter and the shape of bubble size distribution.  相似文献   

16.
On the experimental investigation on primary atomization of liquid streams   总被引:5,自引:0,他引:5  
The production of a liquid spray can be summarized as the succession of the following three steps; the liquid flow ejection, the primary breakup mechanism and the secondary breakup mechanism. The intermediate step—the primary breakup mechanism—covers the early liquid flow deformation down to the production of the first isolated liquid fragments. This step is very important and requires to be fully understood since it constitutes the link between the flow issuing from the atomizer and the final spray. This paper reviews the experimental investigations dedicated to this early atomization step. Several situations are considered: cylindrical liquid jets, flat liquid sheets, air-assisted cylindrical liquid jets and air-assisted flat liquid sheets. Each fluid stream adopts several atomization regimes according to the operating conditions. These regimes as well as the significant parameters they depend on are listed. The main instability mechanisms, which control primary breakup processes, are rather well described. This review points out the internal geometrical nozzle characteristics and internal flow details that influence the atomization mechanisms. The contributions of these characteristics, which require further investigations to be fully identified and quantified, are believed to be the main reason of experimental discrepancies and explain a lack of universal primary breakup regime categorizations.  相似文献   

17.
This paper describes the implementation of the instability analysis of wave growth on liquid jet surface, and maximum entropy principle (MEP) for prediction of droplet diameter distribution in primary breakup region. The early stage of the primary breakup, which contains the growth of wave on liquid–gas interface, is deterministic; whereas the droplet formation stage at the end of primary breakup is random and stochastic. The stage of droplet formation after the liquid bulk breakup can be modeled by statistical means based on the maximum entropy principle. The MEP provides a formulation that predicts the atomization process while satisfying constraint equations based on conservations of mass, momentum and energy. The deterministic aspect considers the instability of wave motion on jet surface before the liquid bulk breakup using the linear instability analysis, which provides information of the maximum growth rate and corresponding wavelength of instabilities in breakup zone. The two sub-models are coupled together using momentum source term and mean diameter of droplets. This model is also capable of considering drag force on droplets through gas–liquid interaction. The predicted results compared favorably with the experimentally measured droplet size distributions for hollow-cone sprays.  相似文献   

18.
The primary breakup of airblast atomization is governed by complex mechanisms and is still not well understood. In recent years high speed shadowgraphy experiments and Direct Numerical Simulations of prefilming airblast atomization have been performed independently. In this paper detailed results of a combined experimental and numerical study are presented. A single operating point of a planar prefilming airblast atomizer is investigated, based on a spatial resolution of 10 µm and a consistent analysis of the liquid film in both the experimental and the numerical studies. For the analysis the three-dimensional DNS data is projected on a plane, corresponding to the data obtained by shadowgraphy. The experiment is characterized by back light illumination in conjunction with particle and ligament tracking velocimetry. A Depth of Field correction is applied to further improve the measurement accuracy. For the numerical investigation the embedded DNS approach is utilized: The primary breakup region is simulated with a highly resolved DNS, embedded in a coarser Large Eddy Simulation. The comparison comprises a phenomenological discussion of the disintegration process and quantitative results. Distributions for the breakup length, the liquid film deformation velocity, the droplet sizes and velocities are presented. The results are in good agreement and confirm the applicability of the embedded DNS and the particle and ligament tracking velocimetry for the analysis of the primary breakup of airblast atomization. This work also shows the intrinsic limitation of a diffusive interface technique as the results depend on the filtering parameter of the diffuse interface.  相似文献   

19.
A twin-fluid nozzle was proposed for low-pressure atomization. The nozzle is featured by swirling air flows in the mixing chamber. Liquid medium is thereby inhaled due to the pressure difference. An experimental work was performed to investigate the atomization performance of the nozzle and the hydrogen peroxide solution served as the liquid medium. Droplet size and droplet velocity were measured. Effects of the diameter of the air-injection orifice and the air-injection pressure were investigated. The results show that small droplet size is achieved with the proposed nozzle. As the spray develops, Sauter mean diameter (SMD) of the droplets decreases first and then increases, irrespective of the variation of the air-injection orifice diameter and the air-injection pressure. Overall SMD varies inversely with the air-injection orifice diameter and air-injection pressure. Near the nozzle, cross-sectional velocity distribution exhibits a peak-valley pattern, which is replaced with uniformized velocity distributions away from the nozzle. Similarity of cross-sectional radial velocity distribution at different air pressures is evidenced. Furthermore, the correlation between droplet size and droplet velocity is established.  相似文献   

20.
The paper presents the results of experimental studies on atomization of the emulsions flowing through twin-fluid atomizers obtained by the use of the digital microphotography method. The main elements of the test installation were: nozzle, reservoir, pump and measurement units of liquid flow. The photographs were taken by a digital camera with automatic flash at exposure time of 1/8000 s and subsequently analyzed using Image Pro-Plus. The oils used were mineral oils 20–90, 20–70, 20–50 and 20–30. The studies were performed at flow rates of liquid phase changed from 0.0014 to 0.011 (dm3/s) and gas phase changed from 0.28 to 1.4 (dm3/s), respectively. The analysis of photos shows that the droplets being formed during the liquid atomization have very different sizes. The smallest droplets have diameters of the order of 10 μm. The experimental results showed that the changes in physical properties of a liquid phase lead to the significant changes in the spray characteristics. The analysis of the photos of water and emulsions atomization process showed that the droplet sizes are dependent on gas and liquid flow rates, construction of nozzle and properties of liquid. The differences between characteristics of atomization for water and emulsions have been observed. Analysis of photos on forming the droplets in air–water and air-emulsions systems showed that droplets are bigger in air-emulsion system (at the same value of gas to liquid mass ratio). The values of Sauter mean diameter (SMD) increased with increase of volume fraction of oil in emulsion. The droplet size increased with emulsion viscosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号