首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclopentane derivatives bearing a 3-(hydroxymethyl) group, a 4-(2-hydroxyethyl) functionality, and a nucleoside base are carbocyclic variants of nucleoside analogs previously described as building blocks for the preparation of oligonucleotide analogs having dimethylene sulfone (= methanosulfonylmethano) linking groups replacing the phosphodiester linking units found in natural oligonucleotides. These carbocyclic nucleoside analogs (e.g. 17 and 20 ) are stable to both acid-catalyzed depurination and base-catalyzed hydrolysis, in contrast with most non-ionic analogs of oligonucleotides. Furthermore, they can be prepared with complete control over the stereochemistry at the ‘anomeric’ center. A procedure is given for preparing these purine-nucleoside analogs via the construction of an enantiomerically pure carbocyclic skeleton (Schemes 1–3), followed by a Mitsunobu-type reaction to introduce the purine-base derivatives (Scheme 4). Furthermore, preliminary results for the coupling of these analogs to yield nucleoside dimers (e.g. 26 ) are also reported (Scheme 5).  相似文献   

2.
The tricyclic dimethylene hydrocarbons 5 , 6 , 7 , 8 and d2- 5 , (Scheme 2), which are prepared by Wittig-reaction from the corresponding ketones, are rearranged, by heating, to 4-aryl-but-1-yne derivatives via the unstable 6-allenyl-1-methylene-cyclohexa-2, 4-diene intermediates (e.g. Scheme 14). Using the deuterium-labelled compound d2- 5 , it was shown that the allenyl moiety, formed by a retro-Diels-Alder reaction (cycloreversion) of the tricyclic dimethylene compound, migrates with complete inversion in the final o-semibenzene-benzene rearrangement (Schemes 11 and 14). Reaction of 6-propargyl-cyclohexa-2, 4-dien-1-ones with triphenylphosphonium methylide gives 6-propargyl-1-methylene-cyclohexa-2 4-dienes, which immediately undergo a [3s, 3s]-rearrangement to form 4-aryl-buta-1, 2-dienes (Scheme 9). In contrast, the rearrangement of the corresponding 4-propargyl-1-methylene-cyclohexa-2, 5- dienes proceeds by a radical mechanism (Schemes 10 and 13).  相似文献   

3.
The reactions of α-diazo ketones 1a,b with 9H-fluorene-9-thione ( 2f ) in THF at room temperature yielded the symmetrical 1,3-dithiolanes 7a,b , whereas 1b and 2,2,4,4-tetramethylcyclobutane-1,3-dithione ( 2d ) in THF at 60° led to a mixture of two stereoisomeric 1,3-oxathiole derivatives cis- and trans- 9a (Scheme 2). With 2-diazo-1,2-diphenylethanone ( 1c ), thio ketones 2a–d as well as 1,3-thiazole-5(4H)-thione 2g reacted to give 1,3-oxathiole derivatives exclusively (Schemes 3 and 4). As the reactions with 1c were more sluggish than those with 1a,b , they were catalyzed either by the addition of LiClO4 or by Rh2(OAc)4. In the case of 2d in THF/LiClO4 at room temperature, a mixture of the monoadduct 4d and the stereoisomeric bis-adducts cis- and trans- 9b was formed. Monoadduct 4d could be transformed to cis- and trans- 9b by treatment with 1c in the presence of Rh2(OAc)4 (Scheme 4). Xanthione ( 2e ) and 1c in THF at room temperature reacted only when catalyzed with Rh2(OAc)4, and, in contrast to the previous reactions, the benzoyl-substituted thiirane derivative 5a was the sole product (Scheme 4). Both types of reaction were observed with α-diazo amides 1d,e (Schemes 5–7). It is worth mentioning that formation of 1,3-oxathiole or thiirane is not only dependent on the type of the carbonyl compound 2 but also on the α-diazo amide. In the case of 1d and thioxocyclobutanone 2c in THF at room temperature, the primary cycloadduct 12 was the main product. Heating the mixture to 60°, 1,3-oxathiole 10d as well as the spirocyclic thiirane-carboxamide 11b were formed. Thiirane-carboxamides 11d–g were desulfurized with (Me2N)3P in THF at 60°, yielding the corresponding acrylamide derivatives (Scheme 7). All reactions are rationalized by a mechanism via initial formation of acyl-substituted thiocarbonyl ylides which undergo either a 1,5-dipolar electrocyclization to give 1,3-oxathiole derivatives or a 1,3-dipolar electrocyclization to yield thiiranes. Only in the case of the most reactive 9H-fluorene-9-thione ( 2f ) is the thiocarbonyl ylide trapped by a second molecule of 2f to give 1,3-dithiolane derivatives by a 1,3-dipolar cycloaddition.  相似文献   

4.
A new route is presented to prepare analogs of nucleosides homologated at the 3′‐ and 5′‐positions. This route, applicable to both the D ‐ and L ‐enantiomeric forms, is suitable for the preparation of monomeric bis‐homonucleosides needed for the synthesis of oligonucleotide analogs. It begins with the known monobenzyl ether 3 of pent‐2‐yne‐1,5‐diol, which is reduced to alkenol 4 . Sharpless asymmetric epoxidation of 4 , followed by opening of the epoxide 5 with allylmagnesium bromide, gives a mixture of diols 6 and 7 . Protection of the primary alcohol as a silyl ether followed by treatment with OsO4, NaIO4, and mild acid in MeOH, followed by reduction, yields (2R,3R) {{[(tert‐butyl)diphenylsilyl]oxy}methyl}tetrahydro‐2‐(2‐hydroxyethyl)‐5‐methoxyfuran (=methyl 3‐{{[(tert‐butyl)diphenylsilyl]oxy}methyl}‐2,3,5‐trideoxy‐α/β‐D ‐erythro‐hexafuranoside; 10 ) (Scheme 1). Protected nucleobases are added to this skeleton with the aid of trimethylsilyl triflate (Scheme 2). The o‐toluoyl (2‐MeC6H4CO) and p‐anisoyl (4‐MeOC6H4CO) groups were used to protect the exocyclic amino group of cytosine. The bis‐homonucleoside analogs 11 and 14a are then converted to monothiol derivatives suitable for coupling (Schemes 3 and 4) to oligonucleotide analogs with bridging S‐atoms. This synthesis replaces a much longer synthesis for analogous nucleoside analogs that begins with diacetoneglucose (=1,2 : 5,6‐di‐O‐isopropylideneglucose), with the stereogenic centers in the final products derived from the Sharpless asymmetric epoxidation. The new route is useful for large‐scale synthesis of these building blocks for the synthesis of oligonucleotide analogs.  相似文献   

5.
4-Alkoxy-1,3-oxazol-5(2H)-ones of type 4 and 7 were synthesized by two different methods: oxidation of the 4-(phenylthio)-1,3-oxazol-5(2H)-one 2a with m-chloroperbenzoic acid in the presence of an alcohol gave the corresponding 4-alkoxy derivatives 4 , presumably via nucleophilic substitution of an intermediate sulfoxide (Scheme 2). The second approach is the BF3-catalyzed condensation of imino-acetates of type 6 and ketones (Scheme 3). The yields of this more straightforward method were modest due to the competitive formation of 1,3,5-triazine tricarboxylate 8. At 155°, 1,3-oxazol-5(2H)-one 7b underwent decarboxylation leading to an alkoxy-substituted nitrile ylide which was trapped in a 1,3-dipolar cycloaddition by trifluoro-acetophenone to give the dihydro-oxazoles cis- and trans- 9 (Scheme 4). In the absence of a dipolarophile, 1,5-dipolar cyclization of the intermediate nitrile ylide yielded isoindole derivatives 10 (Schemes 4 and 5).  相似文献   

6.
The Dicyanation of 1,4-Diaminoanthraquinones and the Reactivity of 1,4-Diamino-9,10-dioxo-9,10-dihydroanthracene-2,3-dicarbonitriles towards Nucleophilic Reagents The reaction of 1-amino-9, 10-dioxo-4-phenylamino-9,10-dihydroanthracene-2-sulfonic acid ( 1 , R?C6H5) with cyanide in water yields a mixture of 1-amino-9,10-dioxo-4-phenylamino-9,10-dihydroanthracene-2-carbonitrile ( 3 , R ? C6H5) and 1-amino-4-(phenylamino)anthraquinone ( 4 , R ? C6H5) under the usual reaction conditions (Scheme 1). In dimethylsulfoxide, however, a second cyano group is introduced, and 1-amino-9,10-dioxo-4-phenylamino-9,10-dihydroanthracene-2,3-dicarbonitrile (7) is formed (Scheme 2). The cyano groups are very reactive towards nucleophiles. The cyano group in 2-position can be substituted by hydroxide and aliphatic amines (Schemes 5 and 6). The cyano group in 3-position can be eliminated by aliphatic amines and hydrazine (Scheme 7). Nucleophilic attack at the cyano C-atom of the 2-cyano group by suitable reagents leads to ring formation, yielding e.g. 2-(Δ2-1, 3-oxazolin-2-yl)-, 2-(benz[d]imidazol-2-yl)- and 2-(1H-tetrazol-5-yl)anthraquinones (Schemes 8 and 10).  相似文献   

7.
The synthesis of four novel 3′‐C‐branched and 4′‐C‐branched nucleosides and their transformation into the corresponding 3′‐O‐phosphoramidite building blocks for automated oligonucleotide synthesis is reported. The 4′‐C‐branched key intermediate 11 was synthesized by a convergent strategy and converted to its 2′‐O‐methyl and 2′‐deoxy‐2′‐fluoro derivatives, leading to the preparation of novel oligonucleotide analogues containing 4′‐C‐(aminomethyl)‐2′‐O‐methyl monomer X and 4′‐C‐(aminomethyl)‐2′‐deoxy‐2′‐fluoro monomer Y (Schemes 2 and 3). In general, increased binding affinity towards complementary single‐stranded DNA and RNA was obtained with these analogues compared to the unmodified references (Table 1). The presence of monomer X or monomer Y in a 2′‐O‐methyl‐RNA oligonucleotide had a negative effect on the binding affinity of the 2′‐O‐methyl‐RNA oligonucleotide towards DNA and RNA. Starting from the 3′‐C‐allyl derivative 28 , 3′‐C‐(3‐aminopropyl)‐protected nucleosides and 3′‐O‐phosphoramidite derivatives were synthesized, leading to novel oligonucleotide analogues containing 3′‐C‐(3‐aminopropyl)thymidine monomer Z or the corresponding 3′‐C‐(3‐aminopropyl)‐2′‐O,5‐dimethyluridine monomer W (Schemes 4 and 5). Incorporation of the 2′‐deoxy monomer Z induced no significant changes in the binding affinity towards DNA but decreased binding affinity towards RNA, while the 2′‐O‐methyl monomer Z induced decreased binding affinity towards DNA as well as RNA complements (Table 2).  相似文献   

8.
In a search for the inhibitors of platelet aggregation, certain coumarin derivatives were synthesized and evaluated for antiplatelet activity against thrombin(Thr)-, arachidonic acid(AA)-, collagen(Col)-, and platelet-activating-factor(PAF)-induced aggregation in washed rabbit platelets. These compounds were synthesized from 4-hydroxycoumarin ( 1 ) or naphthalen-1-ol via alkylation and Reformatsky-type condensation (Schemes 1–3). Among them, 4-[(2,3,4,5-tetrahydro-4-methylidene-5-oxo-2-phenylfuran-2-yl)methoxy]-2H-1-benzopyran-2-one ( 6b ) showed potent antiplatelet effects on AA- and PAF-induced aggregation with IC50 values of 8.21 and 103.67 m?M , respectively (see Tables 1 and 2). The antiplatelet potency of 6b against PAF-induced aggregation could be further improved by introducing a proper substituent at the 2-phenyl group of the lactone ring.  相似文献   

9.
The cycloaddition between N‐protected 3‐{1‐[(trimethylsilyl)oxy]ethenyl}‐1H‐indoles and substituted maleimides (= 1H‐pyrrole‐2,5‐diones) yielded substituted pyrrolo[3,4‐a]carbazole derivatives bearing an additional succinimide (= pyrrolidine‐2,5‐dione) moiety either at C(5a) or C(10b) depending on the type of the protection group at the indole N‐atom. Derivatives substituted at C(10b) were isolated when the protection group, Me3Si or Boc (tBuOCO), was eliminated during the reaction (Schemes 2 and 3), whereas a substitution at C(5a) was observed when an electron‐withdrawing group, Tos (4‐MeC6H4SO2) or pivaloyl (Me3CCO), was not eliminated (Scheme 1). Complex results were found in reactions between 1‐(trimethylsilyl)‐3‐{1‐[(trimethylsilyl)oxy]ethenyl}‐1H‐indole, in contrast to formerly reported results (Scheme 3). Some derivatives of 1H,5H‐[1,2,4]triazolo[1′,2 : 1,2]pyridazino[3,4‐b]indole‐1,3(2H)‐dione were obtained from reactions with 4‐phenyl‐3H‐1,2,4‐triazole‐3,5(4H)‐dione (Scheme 2). All structures were established by spectroscopic data, by calculations, and one representative structure was confirmed by an X‐ray crystallographic analysis (Fig.). Finally, the formation of the different structure types was discussed, and compared with similar reactions reported in the literature.  相似文献   

10.
Strong bases (lithium diisopropylamide (LDA) or BuLi) convert cyclosporin A (CS) to hexalithio derivative containing a Li alkoxide, four Li azaenolate, and one Li enolate units. The Li6 compound is solubilized in tetrahydrofuran (THF) by addition of excess LDA or LiCl. Reactions with electrophiles (alkyl halides, aldehydes, ClCO2R, CO2, (RS)2, D2O) at low temperatures give products containing new side chains in amino-acid residue 3 of the cyclic undecapeptide (see 1 – 13 , Schemes 1, and 2, and Figs. 1 and 2) in moderate to high yields and, with Re- or Si-selectivities, depending upon the conditions of lithiation of up to 7:1, Pure CS derivatives (Scheme 2, Table 1 in the Exper. Part) can be isolated by column chromatography. N-Alkylations or cleavage of the peptide backbone by carbonyl addition occur only at higher temperatures and/or with prolonged reaction times (see 14 and 15 in Scheme 4). Very little or no epimerization of stereogenic centers occurs under the conditions employed. Possible reasons for the feasibility of these surprizing conversions of CS are discussed (Schemes 4 and 5 and Fig. 3). For comparision, [MeAla3]CS ( 2b ) and [D -MeAla3]CS ( 2a ) were also prepared by conventional peptide synthesis in solution (Schemes 6 and 7). Their 1H- and 13C-NMR spectra are compared with those of CS (Table 2 in the Exper. Part).  相似文献   

11.
Biginelli compounds 1 were first brominated at Me? C(6) with 2,4,4,6‐tetrabromocyclohex‐2,5‐dien‐1‐one to give Br2CH? C(6) derivatives 2 . The hydrolysis of the 6‐(dibromomethyl) group of 2c to give the 6‐formyl derivative 3c in the presence of an expensive Ag salt followed by reaction with N2H4?H2O yielded tetrahydropyrimido[4,5‐d]pyridazine‐2,5(1H,3H)‐dione ( 4c ; Scheme 1). However, treatment of the 6‐(dibromomethyl) derivatives 2 directly with N2H4?H2O led to the fused heterocycles 4 in better overall yield (Schemes 1 and 2; Table).  相似文献   

12.
By combining enamines, derived from aldehydes and diphenylprolinol trimethylsilyl ether (the Hayashi catalyst), with nitroethenes ((D6)benzene, 4‐Å molecular sieves, room temperature) intermediates of the corresponding catalytic Michael‐addition cycles were formed and characterized (IR, NMR, X‐ray analysis; Schemes 36 and Fig. 13). Besides cyclobutanes 2 , 1,2‐oxazine N‐oxide derivatives 3 – 6 and 8 have been identified for the first time, some of which are very stable compounds. It may not be a lack of reactivity (between the intermediate enamines and nitro olefins) that leads to failure of the catalytic reactions (Schemes 35) but the high stability of catalyst resting states. The central role zwitterions play in these processes is discussed (Schemes 1 and 2).  相似文献   

13.
The reactions of thiocarbonyl compounds with cis‐2,3‐dimethyloxirane ( 1a ) in CH2Cl2 in the presence of BF3⋅Et2O or SnCl4 led to trans‐4,5‐dimethyl‐1,3‐oxathiolanes, whereas with trans‐2,3‐dimethyloxirane ( 1b ) cis‐4,5‐dimethyl‐1,3‐oxathiolanes were formed. With the stronger Lewis acid SnCl4, the formation of side‐products was also observed. In the case of 1,3‐thiazole‐5(4H)‐thione 2 , these side‐products are the corresponding 1,3‐thiazol‐5(4H)‐one 5 and the 1 : 2 adduct 8 (Schemes 2 – 4). Their formation can be rationalized by the decomposition of the initially formed spirocyclic 1,3‐oxathiolane and by a second addition onto the C=N bond of the 1 : 1 adduct, respectively. The secondary epimerization by inversion of the configuration of the spiro‐C‐atom (Schemes 5 – 7) can be explained by a Lewis‐acid‐catalyzed ring opening of the 1,3‐oxathiolane ring and subsequent ring closure to the thermodynamically more stable isomer (Scheme 12). In the case of 2,2,4,4‐tetramethyl‐3‐thioxocyclobutanone ( 20 ), apart from the expected spirocyclic 1,3‐oxathiolanes 21 and 23 , dispirocyclic 1 : 2 adducts were formed by a secondary addition onto the C=O group of the four‐membered ring (Schemes 9 and 10).  相似文献   

14.
On the Photochemistry of 1H- and 2H-Indazoles in Acidic Solution It is shown that 1H- and 2H-indazoles (cf. Scheme 2) on protonation (0, 1N H2SO4 in water or alcoholic solution) give analogous indazolium ions (see Fig. 1 and 2) which on irradiation undergo heterolytic cleavage of the N (1), N (2) bond whereby aromatic nitrenium ions in the singlet ground state are formed (cf. Scheme 13). If the para position of these nitrenium ions is not occupied by a substituent (e.g. a methyl group) they are readily trapped by nucleophiles present (e.g. water, alcohols, chloride ions) to yield the corresponding 5-substituted 2-amino-benzaldehydes or acetophenones (cf. Schemes 4–10). Photolysis of indazole ( 4 ) and 3-methyl-indazole ( 5 ) in 0,75N H2SO4 in alcoholic solutions gives in addition minor amounts of the corresponding 3-substituted 2-amino-benzaldehydes and acetophenones, respectively (cf. Schemes 6 and 8 and Table 2). Phenylnitrenium ions carrying a methyl group in the para position give in aqueous sulfuric acid mainly the reduction products, i.e. 2-amino-5-methyl-benzaldehydes (cf. Schemes 11 and 12 and Table 3). In methanolic sulfuric acid, in addition to the reduction products, 6-methoxy substituted benzaldehydes are found (cf. Schemes 11 and 12 and Table 3) which are presumably formed by an addition-elimination mechanism (cf. Scheme 18). It is assumed that precursors of the reduction products are the corresponding nitrenium ions in the triplet ground state. Singlet-triplet conversion of the nitrenium ions may become efficient when addition of nucleophiles to the singlet nitrenium ions is reversible (cf. Scheme 22) thus, enhancing the probability of conversion or when conjugation in the singlet nitrenium ions is disturbed by steric effects (cf. Scheme 20) thus, destabilizing the singlet state relative to the triplet state.  相似文献   

15.
The course of the desulfurization reaction of 4-nitro-N,2-diphenyl-3-(phenylamino)isothiazol-5(2H)-imine ( 3 ) is investigated and the formation of the unstable 3-imino-2-nitroprop-2-enamidine ( A ) as intermediate is discussed. Addition of amines and thiophenol to the reaction mixture yielded the amidine derivatives 5 and the thioimidate 6 , respectively, via nucleophilic addition of the respective reagent to A (Scheme 2). Benzoic acid and thiobenzoic acid afforded the amide 7 and the thioamide 8 , respectively, as secondary products of the expected adducts 7a and 8a (Schemes 3 and 4). The presence of (benzylidene)(methyl)amine in the reaction mixture of the desulfurization of 3 led to the 1,2,4-oxadiazole derivative 10 , together with the quinoxaline N-oxide 4 as a minor product. Reaction mechanisms involving an intermediate ketene imine and participation of the NO2 group in the reaction leading to 1,2,4-oxadiazole 10 are proposed. Ab initio calculations of model structures for the nitroketene imine were performed and the results correlated with the experimental results. The structures of 8 and 10 were established by X-ray crystal-structure analysis.  相似文献   

16.
The novel uncharged analog 2 of adenosine 3′,5′ -monophosphate (1) was prepared in its racemic form. To increase membrane permeability, the phosphate diester monoanion group of 1 was replaced by a dimethylene sulfone unit ( = methanosulfonylmethano group), and the 2′-OH group was removed. To decrease lability against acid-catalyzed depurination, the ring O-atom was replaced by a CH2 group. All three modifications are also expected to increase the stability of analog 2 towards enzymatic degradation. The carbocyclic skeleton of 2 was constructed from trinorbornenecarbaldehyde 3 (see Scheme 1–3), and the adenine precursor 6-chloropurine was introduced in the carbocyclic unit via an SN2 reaction based on Mitsunobu chemistry (Schemes 4 and 5).  相似文献   

17.
Intensive studies on the diazomethane methylation of the common ribonucleosides uridine, cytidine, adenosine, and guanosine and its derivatives were performed to obtain preferentially the 2′-O-methyl isomers. Methylation of 5′-O-(monomethoxytrityl)-N2-(4-nitrophenyl)ethoxycarbonyl-O6-[2-(4-nitrophenyl)ethyl]-guanosine ( 1 ) with diazomethane resulted in an almost quantitative yield of the 2′- and 3′-O-methyl isomers which could be separated by simple silica-gel flash chromatography (Scheme 1). Adenosine, cytidine, and uridine were methylated with diazomethane with and without protection of the 5′ -O-position by a mono- or dimethoxytrityl group and the aglycone moiety of adenosine and cytidine by the 2-(4-nitrophenyl)ethoxycarbonyl (npeoc) group (Schemes 2–4). Attempts to increase the formation of the 2′-O-methyl isomer as much as possible were based upon various solvents, temperatures, catalysts, and concentration of the catalysts during the methylation reaction.  相似文献   

18.
Ru‐Catalyzed olefin cross‐metathesis (CM) has been successfully applied to the synthesis of several phytyl derivatives ( 2b, 2d – f, 3b ) with a trisubstituted C?C bond, as useful intermediates for an alternative route to α‐tocopheryl acetate (vitamin E acetate; 1b ) (Scheme 1). Using the second‐generation Grubbs catalyst RuCl2(C21H26N2)(CHPh)PCy3 (Cy = cyclohexyl; 4a ) and Hoveyda–Grubbs catalyst RuCl2(C21H26N2){CH‐C6H4(O‐iPr)‐2} ( 4b ), the reactions were performed with various C‐allyl ( 5a – f, 7a,b ) and O‐allyl ( 8a – d ) derivatives of trimethylhydroquinone‐1‐acetate as substrates. 2,6,10,14‐Tetramethylpentadec‐1‐ene ( 6a ) and derivatives 6c – e of phytol ( 6b ) as well as phytal ( 6f ) were employed as olefin partners for the CM reactions (Schemes 2 and 5). The vitamin E precursors could be prepared in up to 83% isolated yield as (E/Z)‐mixtures.  相似文献   

19.
The macrocyclization between buckminsterfullerene, C60, and bis-malonate derivatives in double Bingel reaction provides a versatile and simple method for the preparation of covalent bis-adducts of C60 with high regio- and diastereoselectivity. A combination of spectral analysis, stereochemical considerations, and X-ray crystallography (Fig. 2) revealed that out of the possible in-in, in-out, and out-out stereoisomers, the reaction of bis-malonates linked by o-, m-, or p-xylylene tethers afforded only the out-out ones (Scheme 1). In contrast, the use of larger tethers derived from 1,10-phenanthroline also provided a first example, (±)- 19 (Scheme 2), of an in-out product. Starting from optically pure bis-malonate derivatives, the new bis-functionalization method permitted the diastereoselective preparation of optically active fullerene derivatives (Schemes 4 and 5) and, ultimately, the enantioselective preparation (enantiomeric excess ee > 97%) of optically active cis-3 bis-adducts whose chirality results exclusively from the addition pattern (Fig. 6). The macrocyclic fixation of a bis-malonate with an optically active, 9,9′-spirobi[9H-fluorene]-derived tether to C60 under generation of 24 and ent- 24 with an achiral addition pattern (Scheme 4) was found to induce dramatic changes in the chiroptical properties of the tether chromophore such as strong enhancement and reversal of sign of the Cotton effects in the circular dichroism (CD) spectra (Figs. 4 and 5). By the same method, the functionafized bis-adducts 50 and 51 (Schemes 10 and 11) were prepared as initiator cores for the synthesis of the fullerene dendrimers 62 , 63 , and 66 (Schemes 12 and 13) by convergent growth. Finally, the new methodology was extended, to the regio- and diastereoselective construction of higher cyclopropanated adducts. Starting from mono-adduct 71 , a clipping reaction provided exclusively the all-cis-2 tris-adduct (±)- 72 (Scheme 14), whereas the similar reaction of bis-adduct 76 afforded the all-cis-2 tetrakis-adduct 77 (Scheme 15). Electrochemical investigations by steady-state voltammetry (Table 2) in CH2Cl2 (+0.1M Bu4NPF6) showed that all macroeyciic bis(methano)fullerenes underwent multiple reduction steps, and that regioisomerism was not much influencing the redox potentials, All cis-2 bis-adducts gave an instable dianion which decomposed during the electrochemical reduction. In CH2Cl2, the redox potential of the fullerene core in dendrimers 62, 63 , and 66 is not affected by differences in size and density of the surrounding poly(ether-amide) dendrons. The all-cis-2 tris- and tetrakis(meihano)fullercnes (±) -72 and 77 , respectively, are reduced at more negative potential than previously reported all-e tris- and tetrakis-adducts with methane bridges that are also located along an equatorial belt. This indicates a larger perturbation of the original fullerene π-chromophore and a larger raise in LUMO energy in the former derivatives.  相似文献   

20.
The Boc-protected tripeptides Boc-Val-Gly-Leu-OH ( 1 ), Boc-Leu-Sar-Leu-OH ( 2 ), Boc-Leu-Gly-MeLeu-OH ( 3 ), and Boc-Val-BzlGly-Leu-OMe ( 64 ), tetrapeptide Boc-Leu-Gly-Pro-Leu-OH ( 9 ), and pentapeptides Boc-Val-Leu-Gly-Abu-Ile-OH ( 4 ), Boc-Val-Leu-Sar-MeAbu-Ile-OH ( 5 ), Boc-Val-Leu-Gly-MeAbu-Ile-OH ( 6 ), Boc-Val-Leu-BzlGly-BzlAbu-Ile-OH ( 7 ), and Boc-Val-Leu-Gly-BzlAbu-Ile-OH ( 8 ) are prepared by conventional methods (Schemes 4–7) or by direct benzylation of the corresponding precursors (Scheme 8). Polylithiations in THF give up to Li6 derivatives containing glycine, sarcosine or N-benzylglycine Li enolate moieties ( A–H ). The polylithiated systems with a dilithium azadienediolate unit ( C, F–H ) are best generated by treatment with t-BuLi. The yields of alkylation of the glycine or sarcosine residues are up to 90%, with diastereoselectivities from nil to 9:1. Normally, the newly formed stereogenic center has (R)-configuration (i.e. a D -amino-acid residue is incorporated in the peptide chain). Electrophiles which can be employed with the highly reactive azadienediolate moiety are: MeI, EtI, i-PrI, allyl and benzyl bromide, ethyl bromoacetate, CO2, and Me2S2 (Schemes 11–13). No epimerizations of the starting materials (racemization of the amino-acid residues) are observed under the strongly basic conditions. Selected conformations of the peptide precursors, generated by shock-freezing or by very slow cooling from room temperature to ?75° before lithiation, give rise to different stereoselectivities (Scheme 11). The latter and the yields can also be influenced by tempering the lithiated species before (Scheme 9) or after addition of the electrophiles (Scheme 12). Besides the desired products, starting peptides are recovered in the chromatographic purification and isolation procedures (material balance 80–95%). The results described are yet another demonstration that peptides may be backbone-modified through Li enolates, and that whole series of analogous peptide derivatives with various side chains may thus be produced from a given precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号