共查询到4条相似文献,搜索用时 0 毫秒
1.
F. Calvo E. Yurtsever 《The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics》2007,44(1):81-91
Finite-size effects on the static and thermodynamical
properties of small three-dimensional clusters of identical charged
particles confined by an harmonic trap are investigated using global
optimization and numerical simulations. The relative stabilities of
clusters containing up to 100 particles are estimated from the
second energy derivatives, as well as from the energy gap between
the two lowest-energy structures at a given size. We also provide a
lower bound for the number of permutationally independent minima, as
a function of size, up to n=75. Molecular dynamics and exchange
Monte Carlo simulations are performed to get insight into the finite
temperature behaviour of these clusters. By focusing on specific
sizes, we illustrate the interplay between the stable structures,
the possible competition between different isomers, and the melting
point. In particular, we find that the orientational melting
phenomenon known in two-dimensional clusters has an equivalent form
in some three-dimensional clusters. The vibrational spectra,
computed for all sizes up to 100, shows an increasing number of
low-frequency modes, but comparing to hydrodynamical theory reveals
strong correlation effects. Finally, we investigate the effects
of the trap anisotropy on the general shape of Coulomb clusters, and
on the melting point of a selected case. 相似文献
2.
用密度泛函理论(DFT)的杂化密度泛函B3LYP方法在6-31G基组水平上对MgmBn(m=1,2;n=1-4)团簇各种可能的构型进行几何结构优化,预测了各团簇的最稳定结构.并对最稳定结构的振动特性、电离势、成键特性、极化率和超极化率等性质进行了理论研究.结果表明,团簇的最稳定结构大多是平面结构,团簇的稳定结构中通常是几个呈负电性的B原子形成一个负电中心,而其他B原子和Mg原子通常处在端位,且显正电性;团簇中通常是B-B键和B-Mg键共存,极少出现Mg-Mg键,
关键词:
mBn(m=1')" href="#">MgmBn(m=1
n=1-4)团簇
密度泛函理论
结构与性质 相似文献
3.
利用密度泛函理论在B3LYP/6-311G*水平上对叠氮化合物(HMgN3)n(n=1–5)团簇各种可能构型进行了几何优化,预测了各团簇的最稳定结构. 并对最稳定结构的成键特性、电荷分布、振动特性及稳定性进行理论研究. 结果表明:HMgN3团簇最稳定结构为直线型;(HMgN3)n(n=2,5)团簇最稳定结构为叠氮基中N原子和金属原子相连构成Mg–N–Mg结构;(HMgN3)n(n=3,4)团簇最稳定结构为叠氮基与Mg原子相互链接形成的环状结构. 团簇最稳定结构中金属Mg原子均显示正电性,H原子均显示负电性,叠氮基中间的N原子显示正电性、两端的N原子显示负电性,且与Mg原子直接作用的N原子负电性更强. Mg–N键和Mg–H键为典型的离子键,叠氮基内N原子之间是共价键. 团簇最稳定结构的红外光谱分为三部分,其最强振动峰均位于2258–2347 cm-1,振动模式为叠氮基中N–N键的反对称伸缩振动. 叠氮基在团簇和晶体中结构不变,始终以直线型存在. 稳定性分析显示,(HMgN3)3团簇相对于其他团簇更为稳定.
关键词:
3)n(n=1–5)团簇')" href="#">(HMgN3)n(n=1–5)团簇
叠氮基
密度泛函理论
结构与性质 相似文献
4.
Fundamental understandings of surface chemistry and catalysis of solid catalysts are of great importance for the developments of efficient catalysts and corresponding catalytic processes, but have been remaining as a challenge due to the complex nature of heterogeneous catalysis. Model catalysts approach based on catalytic materials with uniform and well-defined surface structures is an effective strategy. Single crystals-based model catalysts have been successfully used for surface chemistry studies of solid catalysts, but encounter the so-called “materials gap” and “pressure gap” when applied for catalysis studies of solid catalysts. Recently catalytic nanocrystals with uniform and well-defined surface structures have emerged as a novel type of model catalysts whose surface chemistry and catalysis can be studied under the same operational reaction condition as working powder catalysts, and they are recognized as a novel type of model catalysts that can bridge the “materials gap” and “pressure gap” between single crystals-based model catalysts and powder catalysts. Herein we review recent progress of surface chemistry and catalysis of important oxide catalysts including CeO2, TiO2 and Cu2O acquired by model catalysts from single crystals to nanocrystals with an aim at summarizing the commonalities and discussing the differences among model catalysts with complexities at different levels. Firstly, the complex nature of surface chemistry and catalysis of solid catalysts is briefly introduced. In the following sections, the model catalysts approach is described and surface chemistry and catalysis of CeO2, TiO2 and Cu2O single crystal and nanocrystal model catalysts are reviewed. Finally, concluding remarks and future prospects are given on a comprehensive approach of model catalysts from single crystals to nanocrystals for the investigations of surface chemistry and catalysis of powder catalysts approaching the working conditions as closely as possible. 相似文献