首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
徐溢  徐平洲  张剑  曹强  温志渝 《化学通报》2007,70(9):655-661
微流控芯片上电驱动在线富集技术是一种有效提高分析效率、检测灵敏度和降低对检测器要求的技术和方法。本文针对目前微流控芯片分析系统中生化样品的预处理问题,对芯片上电驱动在线富集技术进行了分析讨论,介绍了等速电泳、等电聚焦、场放大和介电电泳的样品预富集技术在微流控芯片上的实现与应用,并对每一种技术的原理、特点、存在的问题、近年发展的状况和发展趋势进行了综述。  相似文献   

2.
数字微流控技术是一种基于微电极阵列来实现离散液滴精确控制的新型液滴操纵技术。这种基于介电润湿现象实现的液滴电操纵体系,相比于传统微流控芯片具有自动化、可寻址、可动态配置、易集成等特点。该文介绍了数字微流控技术液滴驱动原理,总结了芯片的结构和常用的制作方法,举例阐述了现阶段该技术在生物分析化学领域的应用,并对其应用前景做了展望。  相似文献   

3.
本发明涉及微流控芯片系统的进样方法。在使用固定相的微流控芯片系统中,于芯片分离通道与流动相人口之间设置两个或两个以上的分流通道。通过控制其中流体的切换和截止,实现对微流控芯片系统的大体积进样。该方法适合于微流控芯片中电色谱、加压电色谱和液相色谱模式下的大体积进样。该方法的优点为:可实现微流控芯片中大体积样品的上样;克服了系统中的梯度延迟效应,  相似文献   

4.
在微流控芯片上构建多维分离系统,为蛋白质组学研究提供了一个有发展前景的高效分离分析技术平台。本文介绍了二维芯片电泳系统耦联模式选取及正交性评价的方法;综述了针对蛋白质/多肽分离分析的各种耦联模式微流控二维芯片电泳分析系统,如胶束电动力学色谱(MEKC)与毛细管区带电泳(CZE),开管电色谱(OECE)与CZE,等电聚焦(IEF)与CZE, IEF与SDS毛细管凝胶电泳(CGE), SDS-CGE与MEKC等。特别对二维电泳芯片切换接口的类型进行了分类,探讨了用于微流控二维芯片电泳系统的检测技术,并展望了微流控二维电泳芯片在蛋白质组学研究中的应用前景和发展方向。  相似文献   

5.
基于介电电泳的微流控细胞分离芯片的研究进展   总被引:2,自引:0,他引:2  
细胞分离技术是细胞分选和细胞种群纯化的重要手段,在生物、医学、农业、环境等许多领域都有重要的应用,是当前生化分析领域的国际研究热点。本文介绍了基于介电电泳的微流控细胞分离芯片的研究现状,阐述了介电电泳的工作原理,并依据细胞尺寸、电极形状、外加信号方式等影响细胞介电电泳的关键因素对不同类型的微流控细胞分离芯片进行了详细介绍,并对该技术的未来发展趋势做了展望。  相似文献   

6.
微流控芯片作为一种现代分析方法,近年来得到迅速发展。而磁控微流控芯片是在微流控芯片中引入磁场调控,通过引入磁场丰富了微流控芯片的操控手段,同时结合了磁性材料的优势,使之成为微流控芯片研究的重要组成部分之一。本文重点介绍磁控微流控芯片的研究现状及应用。  相似文献   

7.
基于微流控芯片的色谱系统的研究进展及其应用   总被引:1,自引:0,他引:1  
王新珏  祝莹  方群 《色谱》2011,29(2):99-104
近年来,基于微流控芯片的色谱技术研究取得了快速发展。本文对微流控芯片上色谱柱的加工方法、泵阀驱动控制装置的设计、集成及联用色谱系统的研制及其应用等方面予以综述,涉及文献66篇。  相似文献   

8.
微流控芯片又称芯片实验室,具有检测高效、消耗试剂少、高通量、微型化和集成化等特点,许多检测方式(如光学检测、电化学检测)已经集成于微流控芯片上,而荧光检测是微流控芯片检测技术的常见手段之一。为此,在介绍了荧光检测技术的基本原理和光路结构的基础上,从激发光源、光传辅助手段和检测器等方面综述了微流控芯片荧光检测系统的研究进展,并对其发展进行了展望(引用文献55篇)。  相似文献   

9.
吴永杰  徐溢  彭金兰  曹强  曾萍 《分析化学》2011,(10):1589-1594
基于微流控芯片介电电泳( Dielectrophoresis,DEP)原理和技术,在自行设计制作的抛物线电极结构的微流控介电电泳芯片上,采用芯片介电泳临界频率测定法,选择缓冲液电导率为200~1000 μS/cm,激发电压为5V,分别对红细胞(RBC)、白细胞(WBC)和死活HepG2肝癌细胞的临界频率进行了测试,检测...  相似文献   

10.
该文综述了微流控芯片电泳的制备、结构和应用,比较了不同材料微流控芯片电泳的制备机理、表面改性和性能特点,归纳和总结了不同结构微流控芯片电泳的进样、分离和检测系统以及不同类型微流控芯片电泳在荧光物质、金属离子、糖、药物、核酸、DNA、氨基酸、多肽和蛋白质分析中的应用,并对微流控芯片电泳的未来发展方向做了展望.  相似文献   

11.
Chip-to-world interface is a major issue in the field of microfluidics and its applications. We developed a plug and play microfluidic device composed of a fluid driving unit and a polymer chip containing microfluidic channels and reservoirs. The one and only connection of the device to the external world is a set of electric control lines for the driving unit. Just putting the reagents and samples onto the reservoirs, the chip can be operated for chemical or biochemical reaction and analysis. We demonstrate here that silicon-based micropumps embedded in the present device allow us to achieve flexible fluidic manipulations with minimum time delay and dead volume.  相似文献   

12.
AC electrokinetics is a generic term that refers to an induced motion of particles and fluids under nonuniform AC electric fields. The AC electric fields are formed by application of AC voltages to microelectrodes, which can be easily integrated into microfluidic devices by standard microfabrication techniques. Moreover, the magnitude of the motion is large enough to control the mass transfer on the devices. These advantages are attractive for biomolecular analysis on the microfluidic devices, in which the characteristics of small space and microfluidics have been mainly employed. In this review, I describe recent applications of AC electrokinetics in biomolecular analysis on microfluidic devices. The applications include fluid pumping and mixing by AC electrokinetic flow, and manipulation of biomolecules such as DNA and proteins by various AC electrokinetic techniques. Future prospects for highly functional biomolecular analysis on microfluidic devices with the aid of AC electrokinetics are also discussed.  相似文献   

13.
Fu LM  Yang RJ  Lin CH  Chien YS 《Electrophoresis》2005,26(9):1814-1824
This paper presents a novel technique in which low-frequency periodic electrokinetic driving forces are utilized to mix electrolytic fluid samples rapidly and efficiently in a double-T-form microfluidic mixer. Without using any additional equipment to induce flow perturbations, only a single high-voltage power source is required for simultaneously driving and mixing the sample fluids which results in a simple and low-cost system for the mixing purpose. The effectiveness of the mixer as a function of the applied electric field and the periodic switching frequency is characterized by the intensity distribution calculated downstream from the mixing zone. The present numerical and experimental results confirm that the proposed double-T-form micromixer has excellent mixing capabilities. The mixing efficiency can be as high as 95% within a mixing length of 1000 microm downstream from the secondary T-junction when a 100 V/cm driving electric field strength and a 2 Hz periodic switching frequency are applied. The results reveal that the optimal switching frequency depends upon the magnitude of the main applied electrical field. The rapid double-T-form microfluidic mixer using the periodic driving voltage switching model proposed in this study has considerable potential for use in lab-on-a-chip systems.  相似文献   

14.
微流体驱动与控制技术   总被引:2,自引:0,他引:2  
李清岭  陈令新 《化学进展》2008,20(9):1406-1415
在微流控系统所需的功能单元中,微流体驱动与控制操作单元尤为重要。微系统条件下,表面张力的影响变得十分明显,在工程意义上,常规的流体体积流动的驱动方法在微管道中往往效果不好甚至是不可行的。本文简要评述了用于微流体驱动的机械微型泵技术,基于电、光、磁等的非机械微型泵技术,以及微流体的高效混合控制等技术的研究现状,对微流体驱动与控制的未来作了展望。  相似文献   

15.
袁颖欣  樊晨  潘建章  方群 《色谱》2020,38(2):183-194
微流控技术具有微量、高效、高通量、微型化、集成化、自动化的特点,为实现现场化、低成本的临床生化分析提供了一条可行的技术途径。针对于目前临床生化分析中复杂流体操控的难点,该文依据系统中采用驱动和控制方式的不同,对各种基于微流控技术的临床生化分析系统进行了分类介绍,同时也介绍了市场上商品化的微流控生化分析仪器,并对其各自特点进行了综合评述。  相似文献   

16.
The actuation method using electric force as a driving force is utilized widely in droplet‐based microfluidic systems. In this work, the effects of charging electrode alignment on direct charging of a droplet on electrified electrodes and a subsequent electrophoretic control of the droplet are investigated. The charging characteristics of a droplet according to different electrode alignments are quantitatively examined through experiments and systematic numerical simulations with varying distances and angles between the two electrodes. The droplet charge acquired from the electrified electrode is directly proportional to the distance and barely affected by the angle between the two electrodes. This implies that the primary consideration of electrode alignment in microfluidic devices is the distance between electrodes and the insignificant effect of angle provides a great degree of freedom in designing such devices. Not only the droplet charge acquired from the electrode but also the force exerted on the droplet is analyzed. Finally, the implications and design guidance for microfluidic systems are discussed with an electrophoresis of a charged droplet method‐based digital microfluidic device.  相似文献   

17.
An electric field-free electroosmotic pump has been constructed and its pumping rate has been measured under various experimental conditions. The key component of the pump is an ion-exchange membrane grounding joint that serves two major functions: (i) to maintain fluid continuity between pump channels and microfluidic conduit and (ii) to ground the solution in the microfluidic channel at the joint through an external electrode, and hence to decouple the electric field applied to the pump channels from the rest of the microfluidic system. A theoretical model has been developed to calculate the pumping rates and its validity has been demonstrated.  相似文献   

18.
Precise and reliable liquid delivery is vital for microfluidic applications. Here, we illustrate the design, fabrication, characterization, and application of a portable, low cost, and robust micropump, which brings solution to stable liquid delivery in microfluidic environment. The pump is designed with three optional speeds of different pumping flow rates, and it can be simply actuated by spring‐driven mechanism. The different flow rates of the pump are realized via passive microvalves in a compact microfluidic chip, which is installed in the pump. Importantly, the membrane structures of the microvalves allow accurate liquid control, and stable flow rates can be achieved via a spring setup. The proposed pump is applied to continuously and stably infuse microbead suspension into an inertial microfluidic chip, and good particle focusing is realized in the spiral channel of the inertial microfluidic chip. The proposed portable, self‐powered, and cost‐efficient pump is crucial for microfluidic lab‐on‐a‐chip system integration, which may facilitate microfluidic application for precise liquid delivery, control, measurement, and analysis.  相似文献   

19.
Dielectrophoresis in microfluidics technology   总被引:1,自引:0,他引:1  
Cetin B  Li D 《Electrophoresis》2011,32(18):2410-2427
Dielectrophoresis (DEP) is the movement of a particle in a non-uniform electric field due to the interaction of the particle's dipole and spatial gradient of the electric field. DEP is a subtle solution to manipulate particles and cells at microscale due to its favorable scaling for the reduced size of the system. DEP has been utilized for many applications in microfluidic systems. In this review, a detailed analysis of the modeling of DEP-based manipulation of the particles is provided, and the recent applications regarding the particle manipulation in microfluidic systems (mainly the published works between 2007 and 2010) are presented.  相似文献   

20.
So JH  Dickey MD 《Lab on a chip》2011,11(5):905-911
This paper describes the fabrication and characterization of microelectrodes that are inherently aligned with microfluidic channels and in direct contact with the fluid in the channels. Injecting low melting point alloys, such as eutectic gallium indium (EGaIn), into microchannels at room temperature (or just above room temperature) offers a simple way to fabricate microelectrodes. The channels that define the shape and position of the microelectrodes are fabricated simultaneously with other microfluidic channels (i.e., those used to manipulate fluids) in a single step; consequently, all of the components are inherently aligned. In contrast, conventional techniques require multiple fabrication steps and registration (i.e., alignment of the electrodes with the microfluidic channels), which are technically challenging. The distinguishing characteristic of this work is that the electrodes are in direct contact with the fluid in the microfluidic channel, which is useful for a number of applications such as electrophoresis. Periodic posts between the microelectrodes and the microfluidic channel prevent the liquid metal from entering the microfluidic channel during injection. A thin oxide skin that forms rapidly and spontaneously on the surface of the metal stabilizes mechanically the otherwise low viscosity, high surface tension fluid within the channel. Moreover, the injected electrodes vertically span the sidewalls of the channel, which allows for the application of uniform electric field lines throughout the height of the channel and perpendicular to the direction of flow. The electrodes are mechanically stable over operating conditions commonly used in microfluidic applications; the mechanical stability depends on the magnitude of the applied bias, the nature of the bias (DC vs. AC), and the conductivity of the solutions in the microfluidic channel. Electrodes formed using alloys with melting points above room temperature ensure mechanical stability over all of the conditions explored. As a demonstration of their utility, the fluidic electrodes are used for electrohydrodynamic mixing, which requires extremely high electric fields (~10(5) V m(-1)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号