首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple, accurate and highly sensitive spectrophotometric method is proposed for the rapid determination of pipazethate hydrochloride, dextromethorphan hydrobromide and drotaverine hydrochloride using chromotrope 2B (C2B) and chromotrope 2R (C2R). The method consists of extracting the formed ion-associates into chloroform in the case of pipazethate HCl and dextromethorphan HBr or into methylene chloride in the case of drotaverine HCl. The ion-associates exhibit absorption maxima at 528, 540 and 532 nm with C2B and at 526, 517 and 522 nm with C2R for pipazethate HCl, dextromethorphan HBr and drotaverine HCl, respectively. The calibration curves resulting from the measurements of absorbance-concentration relations (at the optimum reaction conditions) of the extracted ion-pairs are linear over the concentration range 4.36-52.32 microg mL(-1) for pipazethate, 3.7-48.15 microg mL(-1) for dextromethorphan and 4.34-60.76 microg mL(-1) for drotaverine, respectively. The effect of acidity, reagent concentration, time, solvent and stoichiometric ratio of the ion-associates were estimated. The molar absorptivity and Sandell sensitivity of the reaction products were calculated. Statistical treatment of the results reflects that the procedure is precise, accurate and easily applied for the determination of the drugs under investigation in pure form and in their pharmaceutical preparations.  相似文献   

2.
S M Wu  Y H Ho  H L Wu  S H Chen  H S Ko 《Electrophoresis》2001,22(13):2717-2722
In this study, low concentrations of histamine2-receptor (H2-)antagonists were effected across a water plug, with separation taking place in a binary buffer comprising ethylene glycol and NaH2PO4 (pH 5.0), and detection at 214 nm. Liquid-liquid extraction with ethyl acetate- isopropanol is shown to provide extracts that are sufficiently clean. The calibration curves were linear over a concentration range of 0.1-2.00 microg/mL cimetidine, 0.2-5.0 microg/mL ranitidine-HCl, 0.3-5.0 microg/mL nizatidine, and 0.1-3.0 microg/mL famotidine. Mean recoveries were > 82%, while the intra- and interday relative standard deviations (RSDs) and relative errors (REs) were all < 13%. The method is sensitive with a detection limit of 3 ng/mL cimetidine, 30 ng/mL ranitidine HCl, 50 ng/mL nizatidine and 10 ng/mL famotidine (S/N = 3, electric-driven injection 90 s). This newly developed capillary electrophoresis (CE) method was applied for the determination of analytes extracted from plasma taken from a volunteer dosing a cimetidine, ranitidine, and nizatidine tablet simultaneously. These three H2-antagonists can be detected in real samples by this method, excluding the low dosing of famotidine tablet.  相似文献   

3.
A selective, precise, and accurate method was developed for the determination of cimetidine (C), famotidine (F), and ranitidine hydrochloride (R x HCl) in the presence of their sulfoxide derivatives. The method involves quantitative densitometric evaluation of mixtures of the drugs and their derivatives after separation by high-performance thin-layer chromatography on silica gel plates (10 x 20 cm) with ethyl acetate-isopropanol-20% ammonia (9 + 5 + 4, v/v) as the mobile phase for both C and F and ethyl acetate-methanol-20% ammonia (10 + 2 + 2, v/v) as the mobile phase for R x HCl; Rf values for C, F, and R x HCl and their corresponding derivatives were 0.85 and 0.59, 0.73 and 0.41, and 0.56 and 0.33, respectively. Developing time was approximately 20 min. For densitometric evaluation, peak areas were recorded at 218, 265, and 313 nm for C, F, and R x HCl, respectively. The relationship between concentration and the corresponding peak area was plotted for the ranges of 5-50 microg/spot for C and 2-20 microg/spot for F and R x HCl. Mean recoveries were 100.39 +/- 1.33, 99.77 +/- 1.30, and 100.09 +/- 0.69% for C, F, and R x HCl, respectively. The proposed method was used successfully for stability testing of the pure drugs in the presence of up to 90% of their degradates, in bulk powder and dosage forms. The results obtained were analyzed statistically and compared with those obtained by the official methods.  相似文献   

4.
A simple, rapid and sensitive spectrophotometric method has been proposed for the assay of benzydamine HCl (BENZ), levamisole HCl (LEV) and mebeverine HCl (MBV) in bulk and pharmaceutical formulations. The method based on the reaction of the selected drugs with methyl orange (MO) in buffered aqueous solution at pH 3.6. The formed yellow ion-pair complexes were extracted with dichloromethane and measured quantitatively with maximum absorption at 422 nm. The analytical parameters and their effects on the reported systems are investigated. The extracts are intensely colored and very stable at room temperature. The calibration graphs were linear over the concentration range of 2-10 microg ml(-1) for BENZ, 6-24 microg ml(-1) for LEV and 4-14 microg ml(-1) for MBV. The stoichiometry of the reaction was found to be 1:1 in all cases and the conditional stability constant (K(f)) of the complexes have been calculated. The proposed method was successfully extended to pharmaceutical preparations-tablets. Excipients used as additive in commercial formulations did not interfere in the analysis. The proposed method can be recommended for quality control and routine analysis where time, cost effectiveness and high specificity of analytical technique are of great importance.  相似文献   

5.
The bidentate ligand diformylhydrazine (OHC-HN-NH-CHO), DFH, combines with iron(II) and iron(III) in alkaline media in the pH range 7.3-9.3 to form an intensely colored red-purple iron(III) complex with an absorption maximum at 470 nm. Beer's law is obeyed for iron concentrations from 0.25 to 13 microg mL(-1). The molar absorptivity was in the range 0.3258x10(4)-0.3351x10(4) L mol(-1) cm(-1) and Sandell's sensitivity was found to be 0.0168 microg cm(-2). The method has been applied to the determination of iron in industrial waste, ground water, and pharmaceutical samples.  相似文献   

6.
A simple kinetic spectrophotometric method is described for the determination of famotidine. The method is based on the oxidation of the drug with alkaline potassium permanganate. The reaction is followed spectrometrically by measuring the rate of change of the absorbance at 610 nm. The initial-rate and fixed-time (at 12 min) methods are adopted for determining the drug concentration. The calibration graphs are linear in the ranges of 2-10 microg mL(-1) and 1-8 microg mL(-1) using the initial-rate and fixed-time methods, respectively. The method has been applied to the determination of famotidine in tablet formulations. The obtained results are compared statistically with those given by a reference spectrophotometric method.  相似文献   

7.
A simple, rapid, and sensitive spectrophotometric method has been developed for the determination of selenium in real samples of water, soil, plant materials, human hair, and synthetic cosmetic and in pharmaceutical preparations. The method is based on the reaction of selenium with potassium iodide in an acidic medium to liberate iodine. The liberated iodine bleaches the violet color of thionin, and which is measured at 600 nm. This decrease in absorbance is directly proportional to selenium concentration and obeys Beer's law in the range 1-5 micro g selenium in a final volume of 10 mL (0.1-0.5 microg mL(-1)). The molar absorptivity and Sandell's sensitivity of the method were found to be 7.33 x 10(4) L mol(-1) cm(-1) and 0.0011 microg cm(-2), respectively. The optimum reaction conditions and other analytical conditions were evaluated. The effect of interfering ions on the determination is described.  相似文献   

8.
A highly sensitive spectrofluorometric method was developed for the determination of verapamil hydrochloride (VP HCl) in pharmaceutical formulations and biological fluids. The proposed method is based on investigation of the fluorescence spectral behavior of VP HCl in micellar systems, such as sodium dodecyl sulfate (SDS) and beta-cyclodextrin (beta-CD). In aqueous solutions of borate buffer of pH 9 and 8.5, VP HCI was well incorporated into SDS and beta-CD, respectively, with enhancement of its native fluorescence. The fluorescence was measured at 318 nm after excitation at 231 nm. The fluorescence intensity enhancements were 183 and 107% in SDS and in beta-CD, respectively. The fluorescence-concentration plots were rectilinear over the range of 0.02-0.2 and 0.02-0.25 microg/mL, with lower detection limits of 5.58 x 10(-3) and 3.62 x 10(-3) microg/mL in SDS and beta-CD, respectively. The method was successfully applied to the analysis of commercial tablets and the results were in good agreement with those obtained with the official method. The method was further applied to the determination of VP HCl in real and spiked human plasma. The mean % recoveries in the case of spiked human plasma (n=4) was 92.59 +/- 3.11 and 88.35 +/- 2.55 using SDS and beta-CD, respectively, while that in real human plasma (n=3) was 90.17 +/- 6.93 and 89.17 +/- 6.50 using SDS and beta-CD, respectively. The application of the method was extended to the stability studies of VP HCl after exposure to ultraviolet radiation and upon oxidation with hydrogen peroxide.  相似文献   

9.
Mixtures of boron and azomethine-H in solution result in slow complexation. Addition of sodium dodecyl sulfate (SDS), polyethylene glycol dodecyl ether (Brij-35), 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (TritonX-100), and cetyltrimethyl ammonium bromide (CTAB) result in considerable decrease in complexation time and enhancement in signal of peak in solution and also sol-gel. The fluorescence of the complex is monitored at an emission wavelength of 486 nm with excitation at 416 nm. The presence of 1x10(-3) mol L(-1) SDS decreased the complexation time up to 10 min in solution and 20 min in sol-gel for above 0.25 microg B mL(-1) and 30 min in solution and 35 min in sol-gel for below 0.25 microg B mL(-1). However, the photostability did not change by adding micelle in both media. The proposed method shows a linear response toward boron in the concentration range of 0.05-10 microg mL(-1) and is selective for boron over a large number of electrolytes and cations. The detection limit was 7 microg L(-1). This method has been used for the detection of boron in environmental water samples and fruit juices with satisfactory results.  相似文献   

10.
Four new methods were developed and validated for the determination of cinnarizine HCl in its binary mixture with piracetam in pure and pharmaceutical preparations. The first one was a densitometric analysis that provides a simple and rapid method for the separation and quantification of cinnarizine HCI. The method depends on the quantitative densitometric evaluation of thin-layer chromatograms of cinnarizine HCI at 252 nm over concentration range of 1-6 microg/spot, with a mean accuracy of 100.05 +/- 0.91%. The second method was determination of the drug using a colorimetric method that utilizes the reaction of 3-methyl-benzothiazolin-2-one in the presence of FeCl3 as an oxidant. The green color of the resulting product was measured at 630 nm over concentration range 10-40 microg/mL, with a mean accuracy of 100.10 +/- 1.13%. The third method was a direct spectrophotometric determination of cinnarizine HCI at 252 nm over the concentration range 7-20 microg/mL, while piracetam was determined by derivative ratio spectrophotometry at 221.6 nm over concentration range 5-30 microg/mL, with a mean accuracy of 100.14 +/- 0.79 and 100.26 +/- 1.24% for cinnarizine HCI and piracetam, respectively. The last method was a liquid chromatography analysis of both cinnarizine HCI and piracetam, depending on quantitative evaluation of chromatograms of cinnarizine HCI and piracetam at 252 and 212 nm, respectively, over the concentration range 10-200 microg/mL for cinnarizine HCI and 20-500 microg/mL for piracetam, with a mean accuracy of 100.03 +/- 0.89 and 100.40 +/- 0.94% for cinnarizine HCI and piracetam, respectively. The proposed procedures were checked using laboratory-prepared mixtures and successfully applied for the analysis of their pharmaceutical preparations. The validity of the proposed procedures was further assessed by applying the standard addition technique. Recoveries were quantitative, and the results obtained agreed with those obtained by other reported methods.  相似文献   

11.
A simple spectrophotometric method, based on the complexes with xylenol orange (XO) and EDTA, is presented for the rapid determination of aluminium and nickel, respectively, in synthetic samples of hydrotalcite. The method only requires the solubilization in sulphuric acid of the inorganic material before the ligand addition. Under optimum conditions, the complexes Al-XO and Ni-EDTA showed maximum absorption at 554 nm and 380 nm, respectively. The method obeyed Beer's law in the concentration range 0.14-1.8 microg mL(-1) of aluminium, and 30-2730 microg mL(-1) of nickel. Molar absorptivities were 2.45 x 10(4) and 14.85 L mol(-1) cm(-1) while Sandell's sensitivities were 1.1 x 10(-3) and 3.9 microg cm(-2) for aluminium and nickel, respectively. The standard addition technique was used and the recoveries obtained revealed that the proposed procedure shows good accuracy.  相似文献   

12.
A simple and sensitive spectrophotometric method was developed for the determination of trace amounts of sulfur dioxide. The method is based on the reaction of SO2 with a known excess of ICI as the oxidant. The unreacted ICI iodinates thymol blue under acidic conditions. The lambdamax of thymol blue is at 545 nm under acidic conditions, and on lodination lambdamax shifts to 430 nm. This shift results in a decrease in the absorbance at 545 nm. The amount of uniodinated thymol blue present depends on the concentration of unreacted ICI, which in turn depends on the SO2 concentration. The system obeys Beer's law in the range 0-30 microg SO2 in a final volume of 25 mL, having a molar absorptivity of 3.2 x 10(4) L/mol cm with a relative standard deviation (RSD) of 2% at 24 microg SO2 (n = 10). The uniodinated dye can be extracted into 5 mL isoamyl alcohol under acidic conditions for measurement of absorbance. The extraction method obeys Beer's law in the range 0-5 microg SO2, having a molar absorpitivity of 4.16 x 10(4) L/mol x cm with an RSD of 1.9% at 4 microg SO2 (n = 10). The method has been successfully applied to the determination of atmospheric SO2.  相似文献   

13.
Helali N  Tran NT  Monser L  Taverna M 《Talanta》2008,74(4):694-698
A simple and rapid capillary zone electrophoresis (CZE) method with UV detection has been developed for the determination of famotidine and its potential impurities in pharmaceutical formulations. The electrophoretic separation of these compounds was performed using a fused silica capillary and 37.5mmolL(-1) phosphate buffer pH 3.5 as the electrolyte. Under the optimised conditions, six impurities could be resolved from the famotidine peak in less than 7min. The calibration curves obtained for the seven compounds were linear over the concentration range investigated (from 1.5 to 78.5microg mL(-1)). The intra- and inter-day relative standard deviations for the migration times and corrected peak areas were less than 2% and 5%, respectively. The detection limits were found to be 0.09microg mL(-1) for famotidine, and from 0.1 to 0.62microg mL(-1) depending on the impurities. The method has been successfully applied to the determination of famotidine in commercial dosage forms.  相似文献   

14.
Two simple, accurate, and reliable spectrophotometric methods have been developed for the determination of 2 antiviral drugs, acyclovir (ACV) and ribavirin (RBV), in their pharmaceutical formulations. These methods are based on oxidation of the 2 drugs with either cerium (IV) ammonium sulfate (Method A) or potassium persulfate (Method B). The products of oxidation in both methods are coupled with 3-methylbenzothiazolin 2-one hydrazone, producing a deep blue color with a maximum absorption wavelength at 630 nm. In Method A, the absorbance-concentration plots were linear over the ranges of 5-50 and 10-60 microg/mL with detection limits of 0.18 microg/mL (8 x 10(-7) M) and 0.63 microg/mL (2.58 x 10(-6) M) for ACV and RBV, respectively. In Method B, the ranges were 5-45 and 20-50 microg/mL with detection limits of 0.11 microg/mL (4.88 x 10(-7) M) and 1.40 microg/mL (5.73 x 10(-6) M) for the 2 drugs, respectively. The molar absorptivities were 4.1 x 10(3) and 3.65 x 10(3) L/mol/cm in Method A and 5.03 x 10(3) and 3.97 x 10(3) L/mol/cm in Method B for the 2 drugs, respectively. The proposed methods were applied successfully for the determination of the 2 drugs in their pharmaceutical formulations. The percentage recoveries +/- standard deviation were 99.57 +/- 0.86 and 100.82 +/- 0.46 for ACV; 99.41 +/- 1.08 and 100.35 +/- 1.03 for RBV. The results obtained were compared statistically with those given by official methods and showed no significant differences regarding accuracy and precision.  相似文献   

15.
The separation of flunarizine hydrochloride (FLZ) and five of its degradation products--1-[bis(4-fluorophenyl)methyl]-4-(3-phenyl-2-propenyl)piperazine, 4-oxide (A), bis(4-fluorophenyl)methanone (B), bis(4-fluorophenyl)methanol (C), 1-(3-phenyl-2-propenyl)piperazine(D), and 1-[bis-4-fluorophenyl) methyl] piperazine (E)--could be accomplished by reversed phase liquid chromatography using either micellar or microemulsion mobile phases. Cyanopropyl-bonded stationary phase has been used with UV detection at 254 nm. Microemulsion mobile phase consisting of 0.15 M SDS, 10% n-propanol, 1% n-octanol, and 0.3% triethylamine in 0.02 M phosphoric acid of pH 7.0, has been used for the separation of FLZ and its degradation products (B, C, D, and E). Micellar mobile phases consisting of 0.15 M sodium dodecyl sulphate (SDS), 10% n-propanol, 0.3% triethylamine (TEA) in 0.02 M phosphoric acid of pH values either 4.0 or 6.8 have been used for the separation of FLZ from its degradation products, i.e. either from (B, C, D, and E) or from (A, B, C, and D), respectively. Micellar liquid chromatography (MLC) was applied to the determination of FLZ in pure form as well as in dosage forms; the calibration graph was linear over the concentration range of 0.15-50 microg/mL with detection limit of 0.02 microg/mL (4.19 x 10(-8)M).  相似文献   

16.
A simple reversed-phase high-performance liquid chromatography (HPLC) method with ultraviolet detection at 280 nm was developed for simultaneous quantitation of furosemide and hydrochlorothiazide along with phenol red as a nonabsorbable marker for in situ permeability studies in anaesthetized rats. A jejunal segment of approximately 10 cm was isolated and cannulated in both ends for inlet and outlet solution. The perfusate was collected every 10 min, and samples were analyzed using the developed method. The mobile phase was acetonitrile-water-triethylamine-glacial acetic acid (41.5 + 57.4 + 0.1 + 0.9, adjusted to pH 5.6) at a flow rate of 1 mL/min; the run time was 9 min. The calibration graphs were linear for all 3 compounds (r > 0.999) across the concentration range of 7.93-125 microg/mL for phenol red and 6.25-100 microg/mL for hydrochlorothiazide and furosemide. The limits of quantitation were 7.2, 8.9, and 6.8 microg/mL for furosemide, hydrochlorothiazide, and phenol red, respectively. The coefficients of variation for intraassay and interassay precision were less than or equal to 7.6%, and the accuracy was between 93.2-103.4%. Using the single pass intestinal perfusion technique and the suggested HPLC method for sample analysis, mean values of 0.25 x 10(-4) (+/-0.16) cm/s and 0.22 x 10(-4) (+/-0.13) cm/s were obtained for furosemide and hydrochlorothiazide, respectively.  相似文献   

17.
A simple, accurate and sensitive method for the microdetermination of benzocaine, lignocaine and procaine hydrochlorides in pure forms and in pharmaceutical formulations is described. The procedure is based on the reaction of those drugs in an aqueous acidic medium with p-benzoquinone to form charge-transfer complexes. The method has been used for the determination of 5.0-70, 5.0-60 and 5.0-90 microg ml(-1) of benzocaine, lignocaine HCl and procaine HCl, respectively. The complexes have apparent molar absorptivities of 1.70 x 10(3), 2.79 x 10(3) and 2.42 x 10(3) L mol(-1) cm(-1) and Sandell sensitivities of 9.72, 10.34 and 11.25 ng cm(-2), respectively. The proposed procedure of analysis is as accurate as the British Pharmacopoeial method (2003). The method was successfully used for the determination of those drugs in the presence of their degradation products, additives and excipients, which were normally encountered in pharmaceutical formulations.  相似文献   

18.
A sensitive and simple high-performance liquid chromatographic method with UV detection was developed and validated for the determination of andrographolide in rat whole blood. Carbamazepine was employed as internal standard and the blood sample was extracted with chloroform. Chromatographic separations were achieved on a Chromasil ODS column (250 x 4.6 mm, 5 microm). The mobile phase was consisted of methanol-water (52:48, v/v) and delivered at 0.8 mL/min. The detection wavelength was set at 225 nm. The calibration curve had a good linearity in the range 0.053-530 microg/mL in rat whole blood with its correlation coefficient being 0.996. The extraction recovery of andrographolide was ranged from 65.7 to 72.6%. The intra-day and inter-days repeatabilities were below 4.2% in terms of the percentage of relative standard deviation (RSD). The method was used to provide data on the pharmacokinetics of the drug in rats. The data obtained was processed using the 3P87 pharmacokinetic program. The results showed that the disposition of andrographolide after intravenous administration of liposomal andrographolide conformed to a two-compartment open model with alpha = 4.75 x 10(-2) +/- 2.41 x 10(-3) min(-1), beta = 3.16 x 10(-3) +/- 1.58 x 10(-4) min(-1), V(c) = 174.67 +/- 13.97 mL, k(21) = 1.60 x 10(-2) +/- 8.12 x 10(-4) min(-1), k(10) = 9.38 x 10(-3) +/- 5.62 x 10(-4) min(-1), k(12) = 2.53 x 10(-2) +/- 1.27 x 10(-3) min(-1) and AUC(0-infinity) = 1525.47 +/- 92.35 microg min/mL. For the intragastric administration of andrographolide tablets, the disposition of andrographolide followed a one-compartment open model with k(e) = 6.78 x 10(-3) +/- 3.53 x 10(-4) min(-1), k(a) = 3.69 x 10(-2) +/- 4.68 x 10(-3) min(-1), T(max) = 59.69 +/- 3.61 min, C(max) = 1.62 +/- 0.11 microg/mL, V(c) = 1056.90 +/- 83.42 mL, AUC(0-infinity) = 348.75 +/- 24.41 microg min/mL.  相似文献   

19.
Thin-layer chromatography, first derivative, ratio spectra derivative spectrophotometry and Vierordt's method have been developed for the simultaneous determination of paracetamol and drotaverine HCl. TLC densitometric method depends on the difference in Rf values using ethyl acetate:methanol:ammonia (100:1:5 v/v/v) as a mobile phase. The spots of the two drugs were scanned at 249 and 308 nm over concentration ranges of 60-1200 microg/ml and 20-400 microg/ml with mean percentage recovery 100.11%+/-1.91 and 100.15%+/-1.87, respectively. The first derivative spectrophotometric method deals with the measurements at zero-crossing points 259 and 325 nm with mean percentage recovery 99.25%+/-1.08 and 99.45%+/-1.14, respectively. The ratio spectra first derivative technique was used at 246 and 305 nm with mean percentage recovery 99.75%+/-1.93 and 99.08%+/-1.22, respectively. Beer's law for first derivative and ratio spectra derivative methods was obeyed in the concentration range 0.8-12.8 and 0.4-6.4 microg/ml of paracetamol and drotaverine HCl, respectively. Vierordt's method was applied to over come the overlapping of paracetamol and drotaverine HCl in zero-order spectra in concentration range 2-26 and 2-40 microg/ml respectively. The suggested methods were successfully applied for the analysis of the two drugs in laboratory prepared mixtures and their pharmaceutical formulation. The validity of the methods was assessed by applying the standard addition technique. The obtained results were statistically agreed with those obtained by the reported method.  相似文献   

20.
An accurate and simple kinetic method is described for the determination of ranitidine and nizatidine in pure form and in pharmaceuticals. The method is based on the reaction of the compounds with 7-chloro-4-nitrobenz-2-oxa-1,3-diazole in pH 7.4 borate buffer at 60 degrees C for a fixed time of 25 min for both compounds. The absorbance of the reaction product is measured at 495 nm for ranitidine and nizatidine. Calibration graphs were linear over the concentration range of 2-20 microg/mL, with limits of detection of 0.13 (3.7 x 10(-7) M) and 0.25 microg/mL (7.5 x 10(-7) M) for ranitidine and nizatidine, respectively. The proposed method was applied successfully to the determination of ranitidine in tablets and ampoules with average recoveries of 100.26+/-0.69 and 100.29+/-0.59%, respectively, and to the determination of nizatidine in capsules with an average recovery of 104.26+/-0.44%. The results obtained are in good agreement with those obtained by the other methods used for comparison. A proposal of the reaction pathway is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号