首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 129 毫秒
1.
We consider dynamics of phase boundaries in a bistable one-dimensional lattice with harmonic long-range interactions. Using Fourier transform and Wiener–Hopf technique, we construct traveling wave solutions that represent both subsonic phase boundaries (kinks) and intersonic ones (shocks). We derive the kinetic relation for kinks that provides a needed closure for the continuum theory. We show that the different structure of the roots of the dispersion relation in the case of shocks introduces an additional free parameter in these solutions, which thus do not require a kinetic relation on the macroscopic level. The case of ferromagnetic second-neighbor interactions is analyzed in detail. We show that the model parameters have a significant effect on the existence, structure, and stability of the traveling waves, as well as their behavior near the sonic limit.  相似文献   

2.
We study the kinetics of phase transformations in solids using the peridynamic formulation of continuum mechanics. The peridynamic theory is a nonlocal formulation that does not involve spatial derivatives, and is a powerful tool to study defects such as cracks and interfaces.We apply the peridynamic formulation to the motion of phase boundaries in one dimension. We show that unlike the classical continuum theory, the peridynamic formulation does not require any extraneous constitutive laws such as the kinetic relation (the relation between the velocity of the interface and the thermodynamic driving force acting across it) or the nucleation criterion (the criterion that determines whether a new phase arises from a single phase). Instead this information is obtained from inside the theory simply by specifying the inter-particle interaction. We derive a nucleation criterion by examining nucleation as a dynamic instability. We find the induced kinetic relation by analyzing the solutions of impact and release problems, and also directly by viewing phase boundaries as traveling waves.We also study the interaction of a phase boundary with an elastic non-transforming inclusion in two dimensions. We find that phase boundaries remain essentially planar with little bowing. Further, we find a new mechanism whereby acoustic waves ahead of the phase boundary nucleate new phase boundaries at the edges of the inclusion while the original phase boundary slows down or stops. Transformation proceeds as the freshly nucleated phase boundaries propagate leaving behind some untransformed martensite around the inclusion.  相似文献   

3.
We study the propagation of phase transformation fronts induced by the longitudinal impact of two shape memory alloy bars modeled by a general form of a rate-type approach to non-monotone elasticity. We illustrate that such a rate-type law should be seen like a kinetic law for phase transformation. This investigation continues in a comparative way the analysis of the dynamic theory of elastic bar considered in Part I in relation with a viscosity criterion. We focus here on mathematical, thermodynamical and experimental aspects related with the wave structure which accompanies both the forward and reverse transformation. We analyze the propagation of disturbances in a pure phase near and far from their sources, that is the instantaneous waves and the delayed waves as well as the traveling wave solutions and the accompanying dissipation. In the numerical experiments one focuses on the influence of the impact velocity on the way the phase boundary propagates and on the results which can indicate indirectly the existence of a phase transformation like the time of separation, the velocity–time profile at the rear end of the target and the stress history at the impact face.  相似文献   

4.
We prove the existence of multidimensional traveling-wave solutions to the scalar equation for the transport of solutes (contaminants) with nonlinear adsorption and spatially periodic convection-diffusion-adsorption coefficients under the assumption that the nonlinear adsorption function satisfies the Lax and Oleinik entropy conditions. In the nondegenerate case, we also prove the uniqueness of the traveling waves. These traveling waves are analogues of viscous shock profiles. They propagate with effective speeds that depend on the periodic porous media only up to their mean states, and are given by an averaged Rankine-Hugoniot relation. This is a direct consequence of the fact that the transport equation is in conservation form. We use the sliding domain method, the continuation method, spectral theory, maximum principles, and a priori estimates. In the degenerate case, the traveling waves are weak solutions of a degenerate parabolic equation and are only Holder continuous. We obtain them by taking suitable limits on the non-degenerate traveling waves. The uniqueness of the degenerate traveling waves is open.  相似文献   

5.
Elementary waves in Suliciu model for dynamic phase transitions are obtained through traveling wave analysis.For any given initial data with two pieces of constant states,the Riemann solutions are constructed as a combination of elementary waves. When the initial profile contains three pieces of constant states,the solution may be constructed from the Riemann solutions,with each two adjacent states connected by elementary waves.A new Riemann problem forms when these two waves collide.Through the exploration of these Riemann problems,the outcome of wave interactions may be classified in a suitable parametric space.  相似文献   

6.
In this paper we derive an explicit formula for a kinetic relation governing the motion of a phase boundary in a bilinear thermoelastic material capable of undergoing solid-solid phase transitions. To obtain the relation, we study traveling wave solutions of a regularized problem that includes viscosity, heat conduction and convective heat exchange with an ambient medium. Both inertia and latent heat of transformation are taken into account. We investigate the effect of material parameters on the kinetic relation and show that in a certain range of parameters the driving force becomes a non-monotone function of the interface velocity. The model also predicts a nonzero resistance to phase boundary motion, part of which is caused by the thermal trapping. Received: November 15, 2001 / Published online September 4, 2002 RID="*" ID="*" e-mail: annav@math.pitt.edu Communicated by Lev Truskinovsky, Minneapolis  相似文献   

7.
We study a class of systems of reaction–diffusion equations in infinite cylinders which arise within the context of Ginzburg–Landau theories and describe the kinetics of phase transformation in second-order or weakly first-order phase transitions with non-conserved order parameters. We use a variational characterization to study the existence of a special class of traveling wave solutions which are characterized by a fast exponential decay in the direction of propagation. Our main result is a simple verifiable criterion for existence of these traveling waves under the very general assumptions of non-linearities. We also prove boundedness, regularity, and some other properties of the obtained solutions, as well as several sufficient conditions for existence or non-existence of such traveling waves, and give rigorous upper and lower bounds for their speed. In addition, we prove that the speed of the obtained solutions gives a sharp upper bound for the propagation speed of a class of disturbances which are initially sufficiently localized. We give a sample application of our results using a computer-assisted approach.  相似文献   

8.
We numerically study nonlinear phenomena related to the dynamics of traveling wave solutions of the Serre equations including the stability, the persistence, the interactions and the breaking of solitary waves. The numerical method utilizes a high-order finite-element method with smooth, periodic splines in space and explicit Runge–Kutta methods in time. Other forms of solutions such as cnoidal waves and dispersive shock waves are also considered. The differences between solutions of the Serre equations and the Euler equations are also studied.  相似文献   

9.
Viscous fluid flow induced by rotational-oscillatorymotion of a porous sphere submerged in the fluid is determined. The Darcy formula for the viscous medium drag is supplementedwith a term that allows for the medium motion. The medium motion is also included in the boundary conditions. Exact analytical solutions are obtained for the time-dependent Brinkman equation in the region inside the sphere and for the Navier–Stokes equations outside the body. The existence of internal transverse waves in the fluid is shown; in these waves the velocity is perpendicular to the wave propagation direction. The waves are standing inside the sphere and traveling outside of it. The particular cases of low and high oscillation frequencies are considered.  相似文献   

10.
The fully dynamical motion of a phase boundary is considered for a specific class of elastic materials whose stress-strain relation in simple shear is nonmonotone. It is shown that a preexisting stationary phase boundary in a prestressed layer composed of such a material can be set in motion by a finite amplitude shear pulse. An infinity of solutions is possible according to the present theory, each of which is characterized by different reflected and transmitted waves at the phase boundary. A global analysis gives exact bounds on the size of the solution family for different shear pulse amplitudes. For certain ranges of shear pulse amplitudes a completely reflecting solution will exist, while for an in general different range of shear pulse amplitudes a completely transmitting solution will exist. The properties of these different solutions are examined. In particular, it is observed that the ringing of a shear pulse between the external boundaries and the internal phase boundary gives rise to periodic phase boundary motion for both the case of a completely reflecting phase boundary and a completely transmitting phase boundary.  相似文献   

11.
We classify the weak traveling wave solutions for a class of one-dimensional non-linear shallow water wave models. The equations are shown to admit smooth, peaked, and cusped solutions, as well as more exotic waves such as stumpons and composite waves. We also explain how some previously studied traveling wave solutions of the models fit into this classification.  相似文献   

12.
The theory of thermoelastic materials undergoing solid-solid phase transformations requires constitutive information that governs the evolution of a phase boundary. This is known as a kinetic relation which relates a driving traction to the speed of propagation of a phase boundary. The kinetic relation is prescribed in the theory from the onset. Here, though, a special kinetic relation is derived from an augmented theory that includes viscous, strain gradient and heat conduction effects. Based on a special class of solutions, namely travelling waves, the kinetic relation is inherited from the augmented theory as the viscosity, strain gradient and heat conductivity are removed by a suitable limit process.  相似文献   

13.
We consider dynamics of chains of rigid masses connected by links described by irreversible, piecewise linear constitutive relation: the force-elongation diagram consists of two stable branches with a jump discontinuity at the transition point. The transition from one stable state to the other propagates along the chain and excites a complex system of waves. In the first part of the paper (Cherkaev et al., 2004, Transition waves in bistable structures. I. Delocalization of damage), the branches could be separated by a gap where the tensile force is zero, the transition wave was treated as a wave of partial damage. Here we assume that there is no zero-force gap between the branches. This allows us to obtain steady-state analytical solutions for a general piecewise linear trimeric diagram with parallel and nonparallel branches and an arbitrary jump at the transition. We derive necessary conditions for the existence of the transition waves and compute the speed of the wave. We also determine the energy of dissipation which can be significantly increased in a structure characterized by a nonlinear discontinuous constitutive relation. The considered chain model reveals some phenomena typical for waves of failure or crushing in constructions and materials under collision, waves in a structure specially designed as a dynamic energy absorber and waves of phase transitions in artificial and natural passive and active systems.  相似文献   

14.
The Camassa–Holm equation admits undistorted traveling waves that are either smooth or exhibit peaks or cusps. All three wave types can be periodic or solitary. Also waves of different types may be combined. In the present paper it is shown that, apart from peaks and cusps, the traveling waves governed by the Camassa–Holm equation can be found from some simpler equation. In the case of peaked solutions, this reduced equation is even linear. The governing equation of traveling waves in its original form can be interpreted as a nonlinear combination of the reduced equation and its first integral. For a small range of the integration constant, the reduced equation admits bounded solutions, which then are directly inherited by the Camassa–Holm equation. In general, the solutions of the reduced equation are unbounded and cannot be considered to represent traveling waves. The full equation, however, has a nonlinearity in the highest derivative, which is characteristic for the Camassa–Holm and some other equations. This nonlinear term offers the possibility of constructing bounded traveling waves from the unbounded solutions of the reduced equation. These waves necessarily have discontinuities in the slope and are, therefore, solutions only in a generalized sense.  相似文献   

15.
We study traveling wavefront solutions for two reaction–diffusion systems, which are derived respectively as diffusion approximations to two nonlocal spatial SIRS models. These solutions characterize the propagating progress and speed of the spatial spread of underlying epidemic waves. For the first diffusion system, we find a lower bound for wave speeds and prove that the traveling waves exist for all speeds bigger than this bound. For the second diffusion system, we find the minimal wave speed and show that the traveling waves exist for all speeds bigger than or equal to the minimal speed. We further prove the uniqueness (up to translation) of these solutions for sufficiently large wave speeds. The existence of these solutions are proved by a shooting argument combining with LaSalle’s invariance principle, and their uniqueness by a geometric singular perturbation argument.  相似文献   

16.
Within the framework of the weakly nonlinear stability theory, group interaction of disturbances in a supersonic boundary layer is considered. The disturbances are represented by two spatial packets of traveling instability waves (wave trains) with multiple frequencies. The possibility of energy redistribution in such wave systems in the case of three-wave resonant interactions of packet constituents is considered. The model is used to test the dynamics of unstable waves arising due to introduction of controlled high-intensity disturbances into a supersonic boundary layer. It is found that this mechanism is not the main one for the features of streamwise dynamics of such nonlinear waves being observed.  相似文献   

17.
Phase waves rotating in a ring of unidirectionally coupled parametric oscillators are studied. The system has a pair of spatially uniform stable periodic solutions with a phase difference and an unstable quasiperiodic traveling phase wave solution. They are generated from the origin through a period doubling bifurcation and the Neimark?CSacker bifurcation, respectively. In transient states, phase waves rotating in a ring are generated, the duration of which increases exponentially with the number of oscillators (exponential transients). A power law distribution of the duration of randomly generated phase waves and the noise-sustained propagation of phase waves are also shown. These properties of transient phase waves are well described with a kinematical equation for the propagation of wave fronts. Further, the traveling phase wave is stabilized through a pitchfork bifurcation and changes into a standing wave through pinning. These bifurcations and exponential transient rotating waves are also shown in an autonomous system with averaging and a coupled map model, and they agree with each other.  相似文献   

18.
The reflection and refraction of anti-plane shear waves from an interface separating half-spaces with different moduli is well understood in the linear theory of elasticity. Namely, an oblique incident wave gives rise to a reflected wave that departs at the same angle and to a refracted wave that, after transmission through the interface, departs at a possibly different angle. Here we study similar issues for a material that admits mobile elastic phase boundaries in anti-plane shear. We consider an energy minimal equilibrium state in anti-plane shear involving a planar phase boundary that is perturbed due to an incident wave of small magnitude. The phase boundary is allowed to move under this perturbation. As in the linear theory, the perturbation gives rise to a reflected and a refracted wave. The orientation of these waves is independent of the phase boundary motion and determined as in the linear theory. However, the phase boundary motion affects the amplitudes of the departing waves. Perturbation analysis gives these amplitudes for general small phase boundary motion, and also permits the specification of the phase boundary motion on the basis of additional criteria such as a kinetic relation. A standard kinetic relation is studied to quantify the subsequent energy partitioning and dissipation on the basis of the properties of the incident wave.  相似文献   

19.
We study traveling waves for reaction diffusion equations on the spatially discrete domain \mathbb Z2{\mathbb Z^2}. The phenomenon of crystallographic pinning occurs when traveling waves become pinned in certain directions despite moving with non-zero wave speed in nearby directions. In [19] it was shown that crystallographic pinning occurs for all rational directions, so long as the nonlinearity is close to the sawtooth, which itself was considered in [6]. In this paper we show that crystallographic pinning holds in the horizontal and vertical directions for bistable nonlinearities which satisfy a specific computable generic condition. The proof is based on dynamical systems. In particular, it relies on an examination of the heteroclinic chains which occur as singular limits of wave profiles on the boundary of the pinning region.  相似文献   

20.
We study a model for the lateral propagation of a combustion front through a porous medium with two parallel layers having different properties. The reaction involves oxygen and a solid fuel. In each layer, the model consists of a nonlinear reaction–diffusion–convection system, derived from balance equations and Darcy’s law. Under an incompressibility assumption, we obtain a simple model whose variables are temperature and unburned fuel concentration in each layer. The model includes heat transfer between the layers. We find a family of traveling wave solutions, depending on the heat transfer coefficient and other system parameters, that connect a burned state behind the combustion front to an unburned state ahead of it. These traveling waves are strong: they correspond to connecting orbits of a system of five ordinary differential equations that lie in the unstable manifold of a hyperbolic saddle and the stable manifold of a nonhyperbolic equilibrium. We argue that for physically relevant initial conditions, traveling waves that correspond to connecting orbits that approach the nonhyperbolic equilibrium along its center direction do not occur. When the heat transfer coefficient is small, we prove that strong traveling waves exist for a small range of system parameters, near parameter values where the two layers individually admit strong traveling waves with the same speed. When the heat transfer coefficient is large, we prove that strong traveling waves exist for a very large range of parameters. For small heat transfer, combustion typically does not occur simultaneously in the two layers; for large heat transfer, it does. The proofs use geometric singular perturbation theory. We give a numerical method to solve the nonlinear problem, and we present numerical simulations that indicate that the traveling waves we have found are in fact the dominant feature of solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号