首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The strain field ?(x) in an infinitely large, homogenous, and isotropic elastic medium induced by a uniform eigenstrain ?0 in a domain ω depends linearly upon . It has been a long-standing conjecture that the Eshelby's tensor field Sω(x) is uniform inside ω if and only if ω is ellipsoidally shaped. Because of the minor index symmetry , Sω might have a maximum of 36 or nine independent components in three or two dimensions, respectively. In this paper, using the irreducible decomposition of Sω, we show that the isotropic part S of Sω vanishes outside ω and is uniform inside ω with the same value as the Eshelby's tensor S0 for 3D spherical or 2D circular domains. We further show that the anisotropic part Aω=Sω-S of Sω is characterized by a second- and a fourth-order deviatoric tensors and therefore have at maximum 14 or four independent components as characteristics of ω's geometry. Remarkably, the above irreducible structure of Sω is independent of ω's geometry (e.g., shape, orientation, connectedness, convexity, boundary smoothness, etc.). Interesting consequences have implication for a number of recently findings that, for example, both the values of Sω at the center of a 2D Cn(n?3,n≠4)-symmetric or 3D icosahedral ω and the average value of Sω over such a ω are equal to S0.  相似文献   

2.
A new method is presented for calculating the bulk effective elastic stiffness tensor of a two-component composite with a periodic microstructure. The basic features of this method are similar to the one introduced by Bergman and Dunn (1992) for the dielectric problem. It is based on a Fourier representation of an integro-differential equation for the displacement field, which is used to produce a continued-fraction expansion for the elastic moduli. The method enabled us to include a much larger number of Fourier components than some previously proposed Fourier methods. Consequently our method provides the possibility of performing reliable calculations of the effective elastic tensor of periodic composites that are neither dilute nor low contrast, and are not restricted to arrays of nonoverlapping inclusions. We present results for a cubic array of nonoverlapping spheres, intended to serve as a test of quality, as well as results for a cubic array of overlapping spheres and a two dimensional hexagonal array of circles (a model for a fiber reinforced material) for comparison with previous work.  相似文献   

3.
4.
Ductility of high strength steels is often restricted by the onset of a void-sheet mechanism in which failure occurs by a micro-void shear localization process. For the first time, the micro-void shear instability mechanism is identified here by examining the interactions occurring within a system of multiple embedded secondary particles (carbides ∼10-100 nm), through a finite element based computational cell modeling technique (in two and three dimensions). Shear deformation leads to the nucleation of micro-voids as the secondary particles debond from the surrounding alloy matrix. The nucleated micro-voids grow into elongated void tails along the principal shear plane and coalesce with the micro-voids nucleated at neighboring particles. At higher strains, the neighboring particles are driven towards each other, further escalating the severity of the shear coalescence effect. This shear driven nucleation, growth and coalescence mechanism leads to a decrease in the load-bearing surface in the shear plane and a terminal shear instability occurs. The mechanism is incorporated mathematically into a hierarchical steel model. The simulated response corresponds to experimentally observed behavior only when the micro-void shear localization mechanism is considered.  相似文献   

5.
A solution for Eshelby's inclusion problem of a finite homogeneous isotropic elastic body containing an inclusion prescribed with a uniform eigenstrain and a uniform eigenstrain gradient is derived in a general form using a simplified strain gradient elasticity theory (SSGET). An extended Betti's reciprocal theorem and an extended Somigliana's identity based on the SSGET are proposed and utilized to solve the finite-domain inclusion problem. The solution for the disturbed displacement field is expressed in terms of the Green's function for an infinite three-dimensional elastic body in the SSGET. It contains a volume integral term and a surface integral term. The former is the same as that for the infinite-domain inclusion problem based on the SSGET, while the latter represents the boundary effect. The solution reduces to that of the infinite-domain inclusion problem when the boundary effect is not considered. The problem of a spherical inclusion embedded concentrically in a finite spherical elastic body is analytically solved by applying the general solution, with the Eshelby tensor and its volume average obtained in closed forms. This Eshelby tensor depends on the position, inclusion size, matrix size, and material length scale parameter, and, as a result, can capture the inclusion size and boundary effects, unlike existing Eshelby tensors. It reduces to the classical Eshelby tensor for the spherical inclusion in an infinite matrix if both the strain gradient and boundary effects are suppressed. Numerical results quantitatively show that the inclusion size effect can be quite large when the inclusion is very small and that the boundary effect can dominate when the inclusion volume fraction is very high. However, the inclusion size effect is diminishing as the inclusion becomes large enough, and the boundary effect is vanishing as the inclusion volume fraction gets sufficiently low.  相似文献   

6.
This paper mainly presents an exact expression for the mean shape function of a hemispherical inclusion, from which are obtained analytical forms for the mean Green operator (GO) and Eshelby tensor of this hemi-sphere as well as for the related mean pair interaction Green operator (IGO) between the two hemi-spheres of a sphere, in media with isotropic (elastic or dielectric) properties. We secondly address the problem of bi-material inclusions, in the sense of a two-phase compact set of two or a few elementary domains, a particular inclusion pattern case for which we give an estimate of the mean stress and strain in each phase accounting for interactions. This estimate results from knowing the mean GO (or Eshelby tensor) for each pattern element plus the mean IGO between element pairs, what is rarely fulfilled analytically. The here solved case for bi-material spherical inclusions made of two different hemispherical elements adds to the recently made available solution for bi-material cylindrical inclusions made of piled coaxial finite cylinders. The obtained mean stress estimates are exemplified able to satisfactorily match with FEM calculations up to highly contrasted bi-material inclusions. Other types of bi-material spherical inclusions are mentioned for which the mean GOs for the sub-domains and their pair IGO can be obtained without calculation, owing to particular symmetries of the phase arrangement. Mean GOs and IGOs are also useful in certain homogenization frameworks yielding overall property estimates for inclusion-reinforced matrices. Further discussions and specific applications will be presented in forthcoming papers.  相似文献   

7.
A Hashin-Shtrikman-Willis variational principle is employed to derive two exact micromechanics-based nonlocal constitutive equations relating ensemble averages of stress and strain for two-phase, and also many types of multi-phase, random linear elastic composite materials. By exact is meant that the constitutive equations employ the complete spatially-varying ensemble-average strain field, not gradient approximations to it as were employed in the previous, related work of Drugan and Willis (J. Mech. Phys. Solids 44 (1996) 497) and Drugan (J. Mech. Phys. Solids 48 (2000) 1359) (and in other, more phenomenological works). Thus, the nonlocal constitutive equations obtained here are valid for arbitrary ensemble-average strain fields, not restricted to slowly-varying ones as is the case for gradient-approximate nonlocal constitutive equations. One approach presented shows how to solve the integral equations arising from the variational principle directly and exactly, for a special, physically reasonable choice of the homogeneous comparison material. The resulting nonlocal constitutive equation is applicable to composites of arbitrary anisotropy, and arbitrary phase contrast and volume fraction. One exact nonlocal constitutive equation derived using this approach is valid for two-phase composites having any statistically uniform distribution of phases, accounting for up through two-point statistics and arbitrary phase shape. It is also shown that the same approach can be used to derive exact nonlocal constitutive equations for a large class of composites comprised of more than two phases, still permitting arbitrary elastic anisotropy. The second approach presented employs three-dimensional Fourier transforms, resulting in a nonlocal constitutive equation valid for arbitrary choices of the comparison modulus for isotropic composites. This approach is based on use of the general representation of an isotropic fourth-rank tensor function of a vector variable, and its inverse. The exact nonlocal constitutive equations derived from these two approaches are applied to some example cases, directly rationalizing some recently-obtained numerical simulation results and assessing the accuracy of previous results based on gradient-approximate nonlocal constitutive equations.  相似文献   

8.
Recently, Cohen and Bergman (Phys. Rev. B 68 (2003a) 24104) applied the method of elastostatic resonances to the three-dimensional problem of nonoverlapping spherical isotropic inclusions arranged in a cubic array in order to calculate the effective elastic moduli. The leading order in this systematic perturbation expansion, which is related to the Clausius-Mossotti approximation of electrostatics, was obtained in the form of simple algebraic expressions for the elastic moduli. Explicit expressions were derived for the case of a simple cubic array of spheres, and comparison was made with some accurate results. Here, we present explicit expressions for the effective elastic moduli of base-centered and face-centered cubic arrays as well, and make a comparison with other estimates and with accurate numerical results. The simple algebraic expressions provide accurate results at low volume fractions of the inclusions and are good estimates at moderate volume fractions even when the contrast is high.  相似文献   

9.
In this paper we present a unified treatment of composite ellipsoid assemblages in the setting of uncoupled phenomena like conductivity and elasticity and coupled phenomena like thermoelectricity and piezomagnetoelectricity. The building block of this microgeometry is a confocal ellipsoidal particle consisting of a (possibly void) core and a coating. All space is filled up with such units which have different sizes but possess the same aspect ratios. The confocal ellipsoids may have the same orientation in space or may be randomly oriented. The resulting microgeometry simulates two-phase composites in which the reinforcing components are short fibers or elongated particles. Our main interest is in obtaining information of an exact nature on the effective moduli of this microgeometry whose effective tensor symmetry structure depends on the packing mode of the coated ellipsoids. This information will sometimes be complete like the full effective thermoelectric tensor of an assemblage which contains aligned ellipsoids in which the coating is isotropic and the core is arbitrarily anisotropic. In the majority of the cases however the maximum achievable exact information will be only partial and will appear in the form of certain exact relations between the effective moduli of the microgeometry. These exact relations are obtained from exact solutions for the fields in the microstructure for a certain set of loading conditions. In all the considered cases an isotropic coating can be combined with a fully arbitrary core. This covers the most important physical case of anisotropic fibers in an isotropic matrix. Allowing anisotropy in the coating requires the fulfillment of certain constraint conditions between its moduli. Even though in this case the presence of such constraint conditions may render the anisotropic coating material hypothetical, the value of the derived solutions remains since they still provide benchmark comparisons for approximate and numerical treatments. The remarkable feature of the general analysis which covers all treated uncoupled and coupled phenomena is that it is developed solely on the basis of potential solutions of the conduction problem in the same microgeometry.  相似文献   

10.
11.
This paper presents an exact closed-form solution for the Eshelby problem of polygonal inclusion in anisotropic piezoelectric full- and half-planes. Based on the equivalent body-force concept of eigenstrain, the induced elastic and piezoelectric fields are first expressed in terms of line integral on the boundary of the inclusion with the integrand being the Green's function. Using the recently derived exact closed-form line-source Green's function, the line integral is then carried out analytically, with the final expression involving only elementary functions. The exact closed-form solution is applied to a square-shaped quantum wire within semiconductor GaAs full- and half-planes, with results clearly showing the importance of material orientation and piezoelectric coupling. While the elastic and piezoelectric fields within the square-shaped quantum wire could serve as benchmarks to other numerical methods, the exact closed-form solution should be useful to the analysis of nanoscale quantum-wire structures where large strain and electric fields could be induced by the misfit strain.  相似文献   

12.
One considers a linear thermoelastic composite medium, which consists of a homogeneous matrix containing a statistically inhomogeneous random set of heterogeneities with various interface effects and subjected to essentially inhomogeneous loading by the fields of the stresses, temperature, and body forces (e.g., for a centrifugal load). The general integral equations connecting the stress and strain fields in the point being considered and the surrounding points are obtained for the random and deterministic fields of inclusions. The method is based on a centering procedure of subtraction from both sides of a new initial integral equation their statistical averages obtained without any auxiliary assumptions such as the effective field hypothesis (EFH), which is implicitly exploited in the known centering methods. The new initial integral equation is presented in a general form of perturbations introduced by the heterogeneities and taking into account both the spring-layer model and coherent imperfect one. Some particular cases, asymptotic representations, and simplifications of proposed equations as well as a model example demonstrating the essence of two-step statistical average scheme are considered. General integral equations for the doubly and triply periodical structure composites are also obtained.  相似文献   

13.
The pressure-sensitive plastic response of a material has been studied in terms of the intrinsic sensitivity of its yield stress to pressure and the presence and growth of cavities. This work focuses on the interplay between these two distinctly different mechanisms and the attendant material behavior. To this end, a constitutive model is proposed taking both mechanisms into account. Using Gurson's homogenization, an upper bound model is developed for a voided solid with a plastically dilatant matrix material. This model is built around a three-parameter axisymmetric velocity field for a unit sphere containing a spherical void. The void is also subjected to internal pressure; this can be relevant for polymeric adhesives permeated by moisture that vaporizes at elevated temperatures. The plastic response of the matrix material is described by Drucker–Prager's yield criterion and an associated flow rule. The resulting yield surface and porosity evolution law of the homogenized constitutive model are presented in parametric form. Using the solutions to special cases as building blocks, approximate models with explicit forms are proposed. The parametric form and an approximate explicit form are compared against full-field solutions obtained from finite element analysis. They are also studied for loading under generalized tension conditions. These computational simulations shed light on the interplay between the two mechanisms and its enhanced effect on yield strength and plastic flow. Among other things, the tensile yield strength of the porous solid is greatly reduced by the internal void pressure, particularly when a liquid/vapor phase is the source of the internal pressure.  相似文献   

14.
Boundary-layer effects on the effective response of fibre-reinforced media are analysed. The distribution of the fibres is assumed random. A methodology is presented for obtaining non-local effective constitutive operators in the vicinity of a boundary. These relate ensemble averaged stress to ensemble averaged strain. Operators are also developed which re-construct the local fields from their ensemble averages. These require information on the local configuration of the medium. Complete information is likely not to be available, but averages of these operators conditional upon any given local information generate corresponding conditional averages of the fields. Explicit implementation is performed within the framework of an approximation of Hashin-Shtrikman type. Two types of geometry are considered in examples: a half-space and a crack in an infinite heterogeneous medium. These are representative, asymptotically, of the field in the vicinity of any smooth boundary, and in the vicinity of a crack tip, respectively. Results have been obtained for the case of anti-plane deformation, realized by the imposition of either Dirichlet or Neumann conditions on the boundary; those for the Neumann condition are presented and discussed explicitly. The stresses in both fibre and matrix adjacent to a crack tip are shown to differ substantially from the values that would be predicted by ordinary homogenization.  相似文献   

15.
Exact solutions are derived for the problem of a two-dimensional, infinitely anisotropic, linear-elastic medium containing a periodic lattice of voids. The matrix material possesses either one infinitely soft, or one infinitely hard loading direction, which induces localized (singular) field configurations. The effective elastic moduli are computed as functions of the porosity in each case. Their dilute expansions feature half-integer powers of the porosity, which can be correlated to the localized field patterns. Statistical characterizations of the fields, such as their first moments and their histograms are provided, with particular emphasis on the singularities of the latter. The behavior of the system near the void close-packing fraction is also investigated. The results of this work shed light on corresponding results for strongly non-linear porous media, which have been obtained recently by means of the “second-order” homogenization method, and where the dilute estimates also exhibit fractional powers of the porosity.  相似文献   

16.
17.
18.
The effective elastic properties of periodic fibre-reinforced media with complex microstructure are determined by the method of asymptotic homogenization via a novel solution to the cell problem. The solution scheme is ideally suited to materials with many fibres in the periodic cell. In this first part of the paper we discuss the theory for the most general situation—N arbitrarily anisotropic fibres within the periodic cell. For ease of exposition we then restrict attention to isotropic phases which results in a monoclinic composite material with 13 effective moduli and expressions for each of these are determined. In the second part of this paper we shall discuss results for a variety of specific microstructures.  相似文献   

19.
Strain and damage interactions during tearing of a ductile Al-alloy with high work hardening are assessed in situ and in 3D combining two recently developed experimental techniques, namely, synchrotron laminography and digital volume correlation. Digital volume correlation consists of registering 3D laminography images. Via simultaneous assessments of 3D strain and damage at a distance of 1-mm ahead of a notch root of a thin Compact Tension-like specimen, it is found that parallel crossing slant strained bands are active from the beginning of loading in a region where the crack will be slanted. These bands have an intermittent activity but are stable in space. Even at late stages of deformation strained bands can stop their activity highlighting the importance of plasticity on the failure process rather than damage softening. One void is followed over the loading history and seen to grow and orient along the slant strained band at very late stages of deformation. Void growth and strain are quantified. Gurson–Tvergaard–Needleman-type simulations using damage nucleation for shear, which is based on the Lode parameter, are performed and capture slant fracture but not the initial strain fields and in particular the experimentally found slant bands. The band formation and strain distribution inside and outside the bands are discussed further using plane strain simulations accounting for plastic material heterogeneity in soft zones.  相似文献   

20.
Homogenization relations, linking a material's properties at the mesoscale to those at the macroscale, are fundamental tools for design and analysis of microstructure. Recent advances in this field have successfully applied spectral techniques to Kroner-type perturbation expansions for polycrystalline and composite materials to provide efficient inverse relations for materials design. These expansions have been termed ‘weak-contrast’ expansions due to the conditionally convergent integrals, and the reliance upon only small perturbations from the reference property. In 1955, Brown suggested a different expansion for electrical conductivity that resulted in absolutely convergent integrals. Torquato subsequently applied the method to elasticity, with good results even for high-contrast materials; thus it is commonly referred to as a ‘strong contrast’ expansion. The methodology has been applied to elasticity for two phases of isotropic material, generally assuming macroscopic isotropy (with noted exceptions), thus resulting in a rather elegant form of the solution.

More recently, a multi-phase form of the solution was developed for conductivity. This paper builds upon this result to apply the method to elasticity of polycrystalline materials with both local and global anisotropy. New spectral formulations are subsequently developed for both the weak and strong contrast solutions. These form the basis for efficient microstructure analysis using these frameworks, and subsequently for inverse design applications. The process is taken through to demonstration of a property closure, which acts as the basis for materials design; the closure delineates the envelope of all physically realizable property combinations for the chosen properties, based on the particular homogenization relation being used.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号