首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we propose a new method for obtaining the exact solutions of the Mavier-Stokes (NS) equations for incompressible viscous fluid in the light of the theory of simplified Navier-Stokes (SNS) equations developed by the first author[1,2], Using the present method we can find some new exact solutions as well as the well-known exact solutions of the NS equations. In illustration of its applications, we give a variety of exact solutions of incompressible viscous fluid flows for which NS equations of fluid motion are written in Cartesian coordinates, or in cylindrical polar coordinates, or in spherical coordinates. The project supported by National Natural Science Foundation of China.  相似文献   

2.
The paper studies unsteady Navier–Stokes equations with two space variables. It shows that the non-linear fourth-order equation for the stream function with three independent variables admits functional separable solutions described by a system of three partial differential equations with two independent variables. The system is found to have a number of exact solutions, which generate new classes of exact solutions to the Navier–Stokes equations. All these solutions involve two or more arbitrary functions of a single argument as well as a few free parameters. Many of the solutions are expressed in terms of elementary functions, provided that the arbitrary functions are also elementary; such solutions, having relatively simple form and presenting significant arbitrariness, can be especially useful for solving certain model problems and testing numerical and approximate analytical hydrodynamic methods. The paper uses the obtained results to describe some model unsteady flows of viscous incompressible fluids, including flows through a strip with permeable walls, flows through a strip with extrusion at the boundaries, flows onto a shrinking plane, and others. Some blow-up modes, which correspond to singular solutions, are discussed.  相似文献   

3.
The computational cost of numerical methods in microscopic-scales such as molecular dynamics (MD) is a deterrent factor that limits simulations with a large number of particles. Hence, it is desirable to decrease the computational cost and run time of simulations, especially for problems with a symmetrical domain. However, in microscopic-scales, implementation of symmetric boundary conditions is not straight-forward. Previously, the present authors have successfully used a symmetry boundary condition to solve molecular flows in constant-area channels. The results obtained with this approach agree well with the benchmark cases. Therefore, it has provided us with a sound ground to further explore feasibility of applying symmetric solutions of micro-fluid flows in other geometries such as variable-area ducts. Molecular flows are solved for the whole domain with and without the symmetric boundary condition. Good agreement has been reached between the results of the symmetric solution and the whole domain solution. To investigate robustness of the proposed method, simulations are conducted for different values of affecting parameters including an external force, a flow density, and a domain length. The results indicate that the symmetric solution is also applicable to variable-area ducts such as micro-nozzles.  相似文献   

4.
The loading direction-dependent shear behavior of single-layer chiral graphene sheets at different temperatures is studied by molecular dynamics(MD) simulations.Our results show that the shear properties(such as shear stress–strain curves, buckling strains, and failure strains) of chiral graphene sheets strongly depend on the loading direction due to the structural asymmetry. The maximum values of both the critical buckling shear strain and the failure strain under positive shear deformation can be around 1.4 times higher than those under negative shear deformation. For a given chiral graphene sheet, both its failure strain and failure stress decrease with increasing temperature. In particular, the amplitude to wavelength ratio of wrinkles for different chiral graphene sheets under shear deformation using present MD simulations agrees well with that from the existing theory. These findings provide physical insights into the origins of the loading direction-dependent shear behavior of chiral graphene sheets and their potential applications in nanodevices.  相似文献   

5.
Weiguo Rui 《Nonlinear dynamics》2014,76(2):1529-1542
It is well known that it is difficult to obtain exact solutions of some partial differential equations with highly nonlinear terms or high order terms because these kinds of equations are not integrable in usual conditions. In this paper, by using the integral bifurcation method and factoring technique, we studied a generalized Gardner equation which contains both highly nonlinear terms and high order terms, some exact traveling wave solutions such as non-smooth peakon solutions, smooth periodic solutions and hyperbolic function solutions to the considered equation are obtained. Moreover, we demonstrate the profiles of these exact traveling wave solutions and discuss their dynamic properties through numerical simulations.  相似文献   

6.
Step-change stress and strain tests are widely used in fundamental rheological studies of viscoelastic fluids, and their results are important in relation to the potential practical applications of the materials. In this paper, we first give a general review of the experimental and theoretical development of these two tests. Attention is then confined to the creep and recovery (stress) test, which is applied to an implicit rheological fluid model in four different viscometric flows. Numerical solutions, showing the existence of a limiting recoverable strain as a function of stress, are obtained in each of these cases, namely uniaxial extension, simple shear flow, biaxial extension and planar extension. Experimental results of fluid recovery at the relevant high stress levels are not common, but the theoretical results obtained compare favourably with those that are available. Our own experimental results of simple shear flow creep and recovery tests on two polyethylene samples are also used in the comparison.  相似文献   

7.
Long waves in shallow water propagating over a background shear current towards a sloping beach are investigated, and exact solutions are found using a hodograph transform and separation of variables. Inspired by the work of Carrier and Greenspan on steady waves over a uniform beach profile in the irrotational setting, we study waves which propagate over a background shear current. The shallow-water equations are obtained from the nonlinear Benney equations, and exact solutions are found with help of the hodograph transformation in conjunction with several further changes of variables. The hodograph transformation is effected by finding the Riemann invariants after the equations are written in the standard form of barotropic gas dynamics. In the current work, the background flow features zero mass flux, as would be required by a real flow at a beach. Moreover, in contrast with previous work, the present approach allows separate study of the influence of the strength of the shear current and the slope of the bottom profile. This enables us to provide an estimate of the run-up as a function of the shear flow while keeping the bottom slope constant.  相似文献   

8.
The purely rational theory of Eckart continua (i.e. elastic bodies with a variable relaxed state) is applied to viscometric flows of polymeric melts. The main assumptions are thermodynamic non-interaction of inelastic behaviour and of non-elastic stress, as well as elastic isotropy. After establishing the time-dependent differential equations of viscometric flow, these equations are simplified to a set of algebraic equations describing steady-state flow. From this we deduce two general equations connecting the three elastic steady-state viscometric functions which do not depend upon the elastic behaviour. The law of rubber elasticity used in this paper is described in the Appendix.  相似文献   

9.
A hybrid method of continuum and particle dynamics is developed for micro- and nano-fluidics, where fluids are described by a molecular dynamics (MD) in one domain and by the Navier–Stokes (NS) equations in another domain. In order to ensure the continuity of momentum flux, the continuum and molecular dynamics in the overlap domain are coupled through a constrained particle dynamics. The constrained particle dynamics is constructed with a virtual damping force and a virtual added mass force. The sudden-start Couette flows with either non-slip or slip boundary condition are used to test the hybrid method. It is shown that the results obtained are quantitatively in agreement with the analytical solutions under the non-slip boundary conditions and the full MD simulations under the slip boundary conditions.The project supported by Chinese Academy of Sciences under the innovative project “Multi-scale modelling and simulation in complex system” (KJCX-SW-L08) and National Natural Science Foundation of China (10325211).  相似文献   

10.
This paper is a theoretical treatment of the flow of a viscous incompressible fluid driven along a channel by steady uniform suction through porous parallel rigid walls. Many authors have found such flows when they are symmetric, steady and two-dimensional, by assuming a similarity form of solution due to Berman in order to reduce the Navier-Stokes equations to a nonlinear ordinary differential equation. We generalise their work by considering asymmetric flows, unsteady flows and three-dimensional perturbations. By use of numerical calculations, matched asymptotic expansions for large values of the Reynolds number, and the theory of dynamical systems, we find many more exact solutions of the Navier-Stokes equations, examine their stability, and interpret them. In particular, we show that most previously found steady solutions are unstable to antisymmetric two-dimensional disturbances. This leads to a pitchfork bifurcation, stable asymmetric steady solutions, a Hopf bifurcation, stable time-periodic solutions, stable quasi-periodic solutions, phase locking and chaos in succession as the Reynolds number increases.  相似文献   

11.
The investigation of Beltrami flows is important for the research on the mechanism of turbulent structure. In this paper the general solutions of the Beltrami flows are given, which depend explicitly on the solutions of three independent Helmholtz equations with scalar unknowns. Velocity fields of Beltrami flows can then be obtained explicitly after the application of some curl operations on the solutions of Helmholtz equations. On the basis of the exact solutions of Euler equations given above, we obtain one kind of exact solutions of non-steady Navier-Stokes equations which are also the Beltrami flows. Some interesting examples of Beltrami flows other than “ABC flows”, “Kolmogolov flows”, “Rayleigh-Bernard flows”, “Q-flows” are given. The detailed analytic results of these examples will be published in the near future.  相似文献   

12.
采用Tersoff势对含Stone-Wales(SW)拓扑缺陷的单层石墨烯薄膜的单向拉伸力学性能进行了分子动力学模拟,分别研究了SW拓扑缺陷对扶手椅型和锯齿型石墨烯拉伸力学性能及变形机制的影响.研究结果表明,单个SW缺陷对两种手性石墨烯薄膜的杨氏模量几乎无影响,而对薄膜的强度、应变等力学性能和变形破坏机制的影响与手性有...  相似文献   

13.
An exact analysis of the mechanics of interface failure is presented for a trilayer composite system consisting of geometrically and materially distinct linear elastic layers separated by straight nonlinear, uniform and nonuniform decohesive interfaces. The technical significance of this system stems from its utility in representing two slabs joined together by a third adhesive layer whose thickness cannot be neglected. The formulation, based on exact infinitesimal strain elasticity solutions for rectangular domains, employs a methodology recently developed by the authors to investigate both solitary defect as well as multiple defect interaction problems in layered systems under arbitrary loading. Interfacial integral equations, governing the normal and tangential displacement jump components at the interfaces, are solved for the uniformly loaded trilayer system. Interfacial defects, taken in the form of interface perturbations and nonbonded portions of interface, are modeled by coordinate dependent interface strengths. They are examined in a variety of configurations chosen so as to shed light on the various interfacial failure mechanisms active in layered systems.  相似文献   

14.
We suggest a new exact method that allows one to construct solutions to a wide class of linear and some model non-linear hydrodynamic-type systems. The method is based on splitting a system into a few simpler equations; two different representations of solutions (non-symmetric and symmetric) are given. We derive formulas that connect solutions to linear three-dimensional stationary and non-stationary systems (corresponding to different models of incompressible fluids in the absence of mass forces) with solutions to two independent equations, one of which being the Laplace equation and the other following from the equation of motion for any velocity component at zero pressure. To illustrate the potentials of the method, we consider the Stokes equations, describing slow flows of viscous incompressible fluids, as well as linearized equations corresponding to Maxwell's and some other viscoelastic models. We also suggest and analyze a differential-difference fluid model with a constant relaxation time. We give examples of integrable non-linear hydrodynamic-type systems. The results obtained can be suitable for the integration of linear hydrodynamic equations and for testing numerical methods designed to solve non-linear equations of continuum mechanics.  相似文献   

15.
The exact formulation of problems for the unsteady flows of viscous incompressible conducting fluids in MHD channels with arbitrary wall conductivity envisions the joint solution of the equations for the fluid and for the surrounding medium, connected by the conditions at the interface, where the electric and magnetic fields must be continuous [1, 2]. If the side walls of the channel are made from highly conductive material and are connected with the external circuit, then these equations in the general case must be supplemented by the system of equations for the external circuit, written in accordance with Kirchhoff's second law.The solution of such problems in the exact formulation presents extreme difficulties. Moreover, in many particular cases which are of practical interest the problem formulation may be simplified, and solutions may be constructed in closed form.In the following we consider the possibilities of such simplification in studying unsteady flows of a fluid of high conductivity in planar MHD channels with an external electrical circuit.  相似文献   

16.
The strength of true metallic nanowires and nanopillars (diameters below 100 nm) is known to be higher than the strength of bulk metals and is most likely controlled by dislocation nucleation from free surfaces. Dislocation nucleation is a thermally activated process that is sensitive to both temperature and strain rate. However, most simulations rely on high strain rate molecular dynamics to investigate strength and nucleation, which is limited by short molecular dynamics time scales. In this work, the energetics of dislocation nucleation in gold nanowires are computed using atomistic simulations, and transition state theory is used to estimate the strength at experimental strain rates revealing detailed information outside the realm accessible to molecular dynamics simulations. This allows investigation into the competition between thermally activated dislocation nucleation and other failure mechanisms such as elastic and structural instabilities. Additionally, the mechanisms of dislocation nucleation are compared against analytical continuum models which allow a better understanding of the nucleation process including the effects of the wire surfaces. This study helps clarify and consolidate our understanding of the nature of dislocation nucleation in small structures.  相似文献   

17.
18.
Chung  W. C.  Chiu  T. L.  Chow  K. W. 《Nonlinear dynamics》2020,99(4):2961-2970
Nonlinear Dynamics - The dynamics and properties of rogue waves of two classical evolution equations are studied in terms of trajectories of the poles of the exact solutions, by analytically...  相似文献   

19.
Some exact solutions of the time-dependent Navier-Stokes equations are discussed for flows impulsively started from rest by the motion of a boundary or two boundaries or by sudden application of a pressure gradient. It is shown that the expressions of the quantities such as velocity, flux and skin friction obtained in a series form for large times can also be used to find their values for small times or vice versa. Furthermore, conditions for which the values of the quantities at large times are nearly the same with those at small times are derived.  相似文献   

20.
Start-up flows of second grade fluids in domains with one finite dimension   总被引:12,自引:0,他引:12  
A number of unidirectional transient flows of a second grade fluid in a domain with one finite dimension are studied. The method of integral transforms (Fourier, Hankel or Laplace) is applied to obtain exact solutions. A general theorem on start-up flows for second grade fluids is presented that allows us to determine unidirectional flows of second grade fluids once the corresponding solution is known within the context of the Navier-Stokes theory. In the process of obtaining solutions for the fluid of second grade, we find several new exact solutions within the context of the classical Navier-Stokes theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号