首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The issue of wheeled vehicles vs. tracked vehicles for off-road operations has been a subject of debate for a long period of time. Recent interest in the development of vehicles for the rapid deployment of armed forces has given a new impetus to this debate. While a number of experimental studies in comparing the performances of specific wheeled vehicles with those of tracked vehicles under selected operating environments have been performed, it appears that relatively little fundamental analysis on this subject has been published in the open literature, including the Journal of Terramechanics. This paper is aimed at evaluating the tractive performance of wheeled and tracked vehicles from the standpoint of the mechanics of vehicle–terrain interaction. The differences between a tire and a track in generating thrust are elucidated. The basic factors that affect the gross traction of wheeled and tracked vehicles are identified. A general comparison of the thrust developed by a multi-axle wheeled vehicle with that of a tracked vehicle is made, based on certain simplifying assumptions. As the interaction between an off-road vehicle and unprepared terrain is very complex, to compare the performance of a wheeled vehicle with that of a tracked vehicle realistically, comprehensive computer simulation models are required. Two computer simulation models, one for wheeled vehicles, known as NWVPM, and the other for tracked vehicles, known as NTVPM, are described. As an example of the applications of these two computer simulation models, the mobility of an 8 × 8 wheeled vehicle, similar to a light armoured vehicle (LAV), is compared with that of a tracked vehicle, similar to an armoured personnel carrier (APC). It is hoped that this study will illustrate the fundamental factors that limit the traction of wheeled vehicles in comparison with that of tracked vehicles, hence contributing to a better understanding of the issue of wheels vs. tracks.  相似文献   

2.
This paper proposes an experimental method of predicting the traction performance of a small tracked mobile robot. Firstly, a track-terrain interaction model based on terramechanics is built. Then, an experimental platform of the tracked robot is established, on which the measurement methods of the parameters that influencing the accuracy of the prediction model are introduced and the data post-processing are improved, including drawbar pull, slip ratio, sinkage, track deformation and so on. Based on the experimental data, several key terrain parameters are identified. With the tracked robot platform, the drawbar pull-slip ratio relationship is tested, and the effects on drawbar pull considering different kinds of terrain and the influence of the grousers are analyzed as well. The research results provide a reference for the experimental study on the traction performance of small tracked robots.  相似文献   

3.
A theoretical analysis of steerability of tracked vehicles   总被引:1,自引:0,他引:1  
This paper presents a theoretical analysis of steerability of tracked vehicles during uniform turning on level pavement.

Considering all possible factors related to steering problems such as track slippage, centrifugal force and vehicle configuration, equations for uniform turning motion have been developed in order to analyze and predict steering dynamics, and steerability in plane motion of vehicles.

These equations have been numerically solved by a digital computer in terms of turning radius, side slip angle, shift of instantaneous center of vehicle and track slippage.  相似文献   


4.
Modeling track-terrain interaction for transient robotic vehicle maneuvers   总被引:2,自引:0,他引:2  
This article describes integration of a realistic and efficient track-terrain interaction model with a multibody dynamics model of a robotic tracked vehicle. The track-terrain interface continuum is approximated by discretized and parameterizable force elements. Of particular note is a kinematic model used to estimate dynamic shear displacement, taking the form of a partial differential equation. This equation is approximated by a series of ordinary differential equations, making it compatible with multibody dynamics model formulations. Comparisons between simulated results and those obtained from field testing with a remotely-operated unmanned tracked vehicle are made to evaluate the effectiveness of this approach and to validate the use of nominal parameter data from the literature. The test vehicle was subjected to four different types of maneuvers (go-and-stop, j-turn, double lane change, and zero radius turn) on asphalt and dry sand. Simulated results using both the dynamic and steady-state track-terrain interaction models match very well with those obtained from the tests, except for the zero radius turning maneuver in sand. In this case, bulldozing effects must be incorporated to improve prediction of lateral forces.  相似文献   

5.
In the past decade, a series of computer-aided methods (computer-simulation models) have been developed for design and performance evaluation of tracked vehicles, particularly those with short track pitch designed for high speed operations. The latest version, known as NTVPM-86, developed under the auspices of Vehicle Systems Development Corporation, Nepean, Ontario, Canada, takes into account all major vehicle design parameters and terrain characteristics. The basic features of the model have been validated by field tests over a variety of terrains, including mineral, organic and snow-covered terrains. It has been gaining increasingly wide acceptance by industry and governmental agencies in the development and procurement of new vehicles in North America, Europe and Asia. In this paper, the effects of suspension characteristics, initial track tension, track width and ground clearance on the mobility of single unit and two-unit articulated track vehicles over deep snow are systematically evaluated using the computer simulation model NTVPM-86. It is found that these parameters have noticeable effects on vehicle mobility over marginal terrain. The approach to the optimization of tracked vehicle design from the mobility point of view is also examined. It is shown that the simulation model can play a significant role in assisting the procurement manager to select the appropriate vehicle candidates and the design engineer to optimize vehicle design for a given mission and environment.  相似文献   

6.
This paper presents various modelling strategies to account for track in the ride dynamic simulation of high mobility tracked vehicles negotiating rough off-road terrains. Four analytical track representations of varying complexities are formulated in conjuction with an in-plane ride dynamic model of a typical tracked vehicle. These track models are conceived in view of the tracked vehicle kinematics while ignoring the track belt vibrations. The ride dynamic response of a conventional armoured personnel carrier is evaluated in conjunction with different track methods, and validated against field-measured ride data. The relative performances of these track models are thus assessed based on the accuracy of response predictions, and associated computational time.  相似文献   

7.
This paper describes a new special tracked vehicle for use in studying the influence of different vehicle parameters on mobility in soft terrain; particularly muskegg and deep snow. A field test in deep snow was carried out to investigate the influence of nominal ground pressure on tractive performance of the vehicle. The vehicle proved useful for studying vehicle parameters influencing the tractive performance of tracked vehicles. The tests show that the nominal ground pressure has a significant effect on the tractive performance of tracked vehicles in deep snow. The decrease in drawbar pull coefficient when the nominal ground pressure is increased and originates at about the same amount from a decrease of the vehicle thrust coefficient, an increase of the belly drag coefficient and an increase of the track motion resistance coefficient.  相似文献   

8.
This paper describes the results of a study of applying the physics-based, computer-aided method – the Nepean Tracked Vehicle Performance Model (NTVPM), originally developed for evaluating the mobility of large, heavy tracked vehicles, to predicting the performance of a small, lightweight track system on sandy soil. The objective is to examine the applicability of NTVPM to predicting the cross-country performance of small, lightweight tracked vehicles on deformable terrain. The performance of the track system predicted by NTVPM is compared with experimental data obtained in a laboratory soil bin by the Robotic Mobility Group, Massachusetts Institute of Technology. It is shown that the correlation between the tractive performance predicted by NTVPM and that measured is reasonably close, as indicated by the values of the coefficient of correlation, coefficient of determination, root mean squared deviation, and coefficient of variation. The results of this study provide evidence for supporting the view that physics-based methods, such as NTVPM, that are developed on the understanding of the physical nature and detailed analysis of vehicle–terrain interaction, are applicable to large, heavy, as well as small, lightweight vehicles, provided that appropriate terrain data are used as input.  相似文献   

9.
An analytical method for predicting the pressure distribution beneath a tracked vehicle under static conditions is presented. In the analysis, the track-suspension system which consists of the track, the suspension and the track tensioning device, is considered inits entirety. All major design parameters of the vehicle, as well as terrain characteristics, are taken into consideration. It is shown that the analytical method proposed can provide a means whereby the effects of vehicle design parameters and terrain conditions on ground pressure distribution can be assessed quantitatively.  相似文献   

10.
Previous field studies have shown the influence of turning vehicles on rut formation or sinkage. In order to further investigate the relationships, laboratory tests were conduced on a 14.5–20.3 6-PR trailer tire and an Armored Personnel Carrier (APC) track shoe in sand. Lateral displacements, and resulting lateral forces, were applied to the tire and track shoe under constant normal forces. The tire was pulled laterally and the track shoe was pulled back and forth to represent actual movement during vehicle turning. Results show that the lateral force and lateral displacement generated by turning maneuver affect sinkage severely for wheeled and tracked vehicles. The final sinkage caused by the lateral force for the tire is 3–5 times to the static sinkage. For the track shoe, the final sinkage caused by the lateral displacement is about three times to the static sinkage.  相似文献   

11.
Soil surface forces resulting from traffic tracked vehicles can cause environmental damage by decreasing plant development and increasing erosion. This paper investigates the soil surface disturbance from tracked vehicle operation. Sharp turns (lower turning radius) from M113 operation produce increased disturbed widths and more severe vegetation damage. The pad-load ratio for the M113 track shoe was determined at various loads. The soil rut produced from tracked vehicle operation was determined at various driving models (straight, smooth turn, sharp turn). The width and depth of track rut and height of soil piled increased when the tracked vehicle negotiated a sharp turn. The results of this study indicate for the soil conditions tested, the width of disturbance is dependent on the operating characteristics of the vehicle. A vehicle conducting sharp turns will disturb a larger width of soil than a vehicle travelling straight or conducting smooth turns.  相似文献   

12.
The development and success of the Swedish Combat Vehicle CV90 has demonstrated the abilities of the author in the field of terramechanics related to tracked military vehicles. The honour of the Bekker–Reece–Radforth Award 2002 has been granted in recognition of these achievements made during the author's employment at Hägglunds Vehicle AB since 1975. Hägglunds Vehicle AB has been a producer of military vehicles since the late 1950s, although the first years concentrated on production only. From the early 1960s, Hägglunds developed a number of its own tracked vehicles, all of which were influenced by the mobility demands dictated by their intended use in severe terrain conditions, such as those found in Northern Scandinavia. This paper presents a brief history of the advancement of tracked vehicle technology at Hägglunds Vehicle AB. The concepts discussed include: ground pressure, the number of road-wheels, articulated steering, track tension, track attack angle, sinkage, belly effects, and the use of terramechanic simulation. The success of the CV90 demonstrates that the combination of practical experience, terrain knowledge, and terramechanic simulations can effect substantial improvements in vehicle mobility. Evaluation of the CV90 versus other modern combat vehicles of the same class has shown that the CV90 possesses considerably higher mobility and speed under severe terrain conditions. These two attributes provide CV90 with the ability to access terrain that similar vehicles cannot, thus giving the military user greater mobility options.  相似文献   

13.
The objective of this paper is to find an optimal method for the design of tracked base travel systems for special purpose vehicles and robotic machines that may be required to steer over a light bonded terrain composed of fresh concrete. For the case of a vehicle traveling on a weak fresh concrete during construction, the paper presents detailed comparative studies of the steering performances of a small model tracked test vehicle with alternative amount of steering ratio for various concrete slump values. For these studies a detailed simulation analytical method has been developed. From this work it is proven, in comparison to experiment, that the simulation analytical method is useful for predicting various steering performances of a test tracked vehicle running upon soft fresh concrete of various consistencies.  相似文献   

14.
A computer based simulation model for the prediction of the ground pressure distribution beneath tracked vehicles under static conditions has been developed. The model can differentiate between various track designs and is based on an analytical method developed and described by Garber and Wong. Simulating the model with the parameters of a rubber tracked forestry vehicle (FARMI TRAC 5000) led to several conclusions. The road wheel arrangement has a considerable effect on the ground pressure distribution: increasing the number of road wheels reduces the maximum ground pressure and improces the uniformity of the pressure distribution. The radius of the road wheel, the stiffness of the suspension and the stiffness of the track tensioning device have an insignificant effect on the ground pressure distribution. In contrast, the initial track tension and the width of the track have a significant effect on the ground pressure distribution: increasing the initial track tension reduces the maximum ground pressyre and improves the uniformity of the pressure distribution. The same conclusions are valid for an increase of the track width. This model can be used as a tool to assist in the design of off-road vehicles, and is currently being used in the design of forestry vehicles in Ireland.  相似文献   

15.
The purpose of this paper is to study the stability and the behaviour of the dynamics of tank vehicles carrying liquid fuel cargo. Liquid forces and moments due to liquid sloshing is one of the most serious problems strongly related to the instability of tank vehicles. In this paper, a simplified analytical model of liquid sloshing is developed using the Navier–Stokes equations. Simulation results obtained using the full complex Navier–Stokes equations modulated with numerical commercial software are compared to the simplified analytical model. The comparison highlights the validity assumptions used on the analytical model. The results show a good correlation under single or double lane change and turning manoeuvres. In the second part for this paper, a full dynamic vehicle is coupled with the analytical liquid model. This simulation result is compared to a rigid vehicle cargo.  相似文献   

16.
17.
《Journal of Terramechanics》2004,41(2-3):113-126
A spatial motion analysis model for high-mobility tracked vehicles was constructed for evaluation of ride performance, steerability, and stability on rough terrain. Ordinary high-mobility tracked vehicles are equipped with independent torsion bar type suspension system, which consists of road arms and road wheels. The road arm rotates about the axis of torsion bar, and rigidity of the torsion bar and cohesion of damper absorb sudden force change exerted by interaction with the ground. The motion of the road arms should be considered for the evaluation of off-road vehicle performance in numerical analysis model. In order to obtain equations of motion for the tracked vehicles, the equations of motion for the vehicle body and for the assembly of a road wheel and a road arm were constructed separately at first. Two sets of equations were reduced with the constraint equations, which the road arms are mechanically connected to the vehicle body. The equations of motion for the vehicle have been expressed with minimal set of variables of the same number as the degrees of freedom for the vehicle motion. We also included the effect of track tension in the equations without constructing equations of motion for the tracks. Numerical simulation based on the vehicle model and experiment of a scale model passing over a trapezoidal speed bump were performed in order to examine the numerical model. It was found that the numerical results reasonably predict the vehicle motion.  相似文献   

18.
Trafficability of terrain is a function of soft soil, hard or rough ground, geometric obstacles, vegetation, and the riverine environment. All of these terrain aspects are altered by cold temperatures and snow cover. This paper examines the effect of snow cover on obstacle crossing performance of vehicles. The mathematical expressions describing step negotiation, trench crossing, and slope climbing on snow-covered obstacles are given in terms of tracked vehicle, obstacle, and snow parameters.Tests of two tracked vehicles on snow-covered slopes, stream crossings, steps, and trenches were conducted, and some of the results were compared with computed values. Differences between computed and experimental values are attributed to neglecting slip-sinkage and track deflection in the computations.  相似文献   

19.
A skid steering model with track pad flexibility   总被引:5,自引:0,他引:5  
The paper describes a model for predicting the skid-steering performance of tracked vehicles that allows for the flexibility of the track pads. It thus accounts for the reductions in friction moment that are observed as the radius of the turn is increased. The pad model computes a compound slip function and takes account of the shear stiffness of the pad and the limiting friction between the pad and the ground. Vehicle dimensions and the equations of motion are entered into a Microsoft Excel spreadsheet. The equations are solved using the Excel Solver routine. This avoids the need for specialised software or programming skills. It also gives good insight into the mechanics of steering and the factors affecting performance. Predicted sprocket torques for a Jaguar vehicle turning at different radii show good agreement with experimental measurements. The steering performance of an example six axle 24 tonne vehicle is computed and compared with that using the early Merritt/Steeds model that ignored track pad flexibility. The flexible pad model generally shows the vehicle to be slightly oversteer, whereas the Merritt/Steeds model predicts the vehicle to be understeer. At higher speeds the maximum cornering acceleration is likely to be limited by available power at the sprockets. Altering the static weight distribution of the vehicle shows that a forward weight distribution tends to cause a more oversteer response with reduced limiting lateral acceleration. With a rearward weight distribution, the vehicle response tends towards neutral to slight understeer. This is in contrast to Ackerman steered wheeled vehicles with pneumatic tyres where moving the CG forward tends to a more understeer response. Using the concept of static margin as applied to wheeled vehicles, it is suggested that a uniform or slightly forward weight distribution would make tracked vehicles less sensitive to external disturbances (cambered roads for example).  相似文献   

20.
In this study, we describe a mathematical model designed to allow for the determination of the mechanical relationship existing between soil characteristics and the primary design factors of a tracked vehicle, and to predict the tractive performance of this tracked vehicle on soft terrain. On the basis of the mathematical model, a computer simulation program (Tractive Performance Prediction Model for Tracked Vehicles; TPPMTV) was developed in this study. This model took into account the characteristics of the terrain, including the pressure-sinkage, the shearing characteristics, and the response to the repetitive loading, as well as the primary design parameters of the tracked vehicle. The efficacy of the developed model was then confirmed via comparison of the drawbar pulls of tracked vehicles predicted using the simulation program TPPMTV, with those determined as the result of traction tests. The results indicated that the predicted drawbar pulls, with the change in slip, were quite consistent with the ones measured in the traction test, for the changes in the weight of the vehicle, the initial track tension, and the number of roadwheels within the entire slip range. Thus, we concluded that the simulation program developed in this study, named TPPMTV, proved useful in the prediction of the tractive performance of a tracked vehicle, and that this system might be applicable to the design of a vehicle, possibly enabling a significant improvement in its functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号