首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrate that in a triangular configuration of an optical lattice of two atomic species a variety of novel spin-1/2 Hamiltonians can be generated. They include effective three-spin interactions resulting from the possibility of atoms tunneling along two different paths. This motivates the study of ground state properties of various three-spin Hamiltonians in terms of their two-point and n-point correlations as well as the localizable entanglement. We present a Hamiltonian with a finite energy gap above its unique ground state for which the localizable entanglement length diverges for a wide interval of applied external fields, while at the same time the classical correlation length remains finite.  相似文献   

2.
The entanglement properties of a three-spin X X Z Heisenberg chain with three-spin interaction are studied by means of concurrence of pairwise entanglement. We show that ground-state pairwise entanglement, pairwise thermal entanglement, or quantum phase transition is not present in antiferromagnetic spin chain. For the ferromagnetic case, quantum phase transition takes place at △ = 1 for anisotropic interaction and at some values of three-spin coupling strength, and pairwise thermal entanglement increases when the value of J/T increases and with anisotropic interaction and three-spin interaction decrease. In addition, we find that increasing the anisotropic interaction and the three-spin interaction will decrease critical temperature.  相似文献   

3.
The entanglement properties of a three-spin X X Z Heisenberg chain with three-spin interaction are studied by means of concurrence of pairwise entanglement. We show that ground-state pairwise entanglement, pairwise thermal entanglement, or quantum phase transition is not present in antiferromagnetic spin chain. For the ferromagnetic case, quantum phase transition takes place at A = 1 for anisotropic interaction and at some values of three-spin coupling strength, and pairwise thermal entanglement increases when the value of J/T increases and with anisotropic interaction and three-spin interaction decrease. In addition, we find that increasing the anisotropic interaction and the three-spin interaction will decrease critical temperature.  相似文献   

4.
We investigate the quantum interference of spin wave excitations of a spin-1 atomic Bose condensate confined in an optical lattice. Single-channel and dual-channel interactions are employed in our system, and their induced excitations are compared. Also we consider the interplay of magneto-optical excitations, which leads to a constructive or destructive effect for the creation of magnons based on background excitations. The population distributions of excited magnons can be well controlled by steering the long-range dipole-dipole interactions. Such a scheme can be used to demonstrate conventional quantum-optical phenomena like dynamical Casimir effect at finite temperatures.  相似文献   

5.
We investigate the quantum interference of spin wave excitations of a spin-1 atomic Bose condensate confined in an optical lattice. Single-channel and dual-channel interactions are employed in our system, and their induced excitations are compared. Also we consider the interplay of magneto-optical excitations, which leads to a constructive or destructive effect for the creation of magnons based on background excitations. The population distributions of excited magnons can be well controlled by steering the long-range dipole-dipole interactions. Such a scheme can be used to demonstrate conventional quantum-optical phenomena like dynamical Casimir effect at finite temperatures.  相似文献   

6.
We propose an optical scheme to generate cluster states of atomic qubits, with each trapped in separate optical cavity, via atom-cavity-laser interaction. The quantum information of each qubit is encoded on the degenerate ground states of the atom, hence the entanglement between them is relatively stable against spontaneous emission. A single-photon source and two classical fields are employed in the present scheme. By controlling the sequence and time of atom-cavity-laser interaction, we show that the atomic cluster states can be produced deterministically.  相似文献   

7.
The generation of non-equilibrium thermal quantum discord and entanglement is investigated in a three-spin chain whose two end spins are respectively coupled to two thermal reservoirs at different temperatures. We show that the spin chain can be decoupled from the thermal reservoirs by homogeneously applying a magnetic field and including a strong three-spin interaction, and then the maximal steady-state quantum discord and entanglement in the two end spins can always be created. In addition, the present investigation may provide a useful approach to control coupling between a quantum system and its environment.  相似文献   

8.
A key element in the architecture of quantum information processing is a reliable physical interface between fields and qubits. Here, we study the population transfer and entanglement for a two-level atomic system interacting with entangled spin coherent states (ESCSs) considering one- and two-mode interactions. The results show that decrease in the spin number provides a periodic behavior of the entanglement exhibiting the sudden death and birth phenomena. For large values of spin, the atom–field system stabilizes at high value of entanglement during the time evolution exhibiting maximum correlations for both cases of one- and two-mode interactions. Finally, we find an interesting correlation between the entanglement and the population transfer during the time evolution. In particular, we show that the population may be used as an indicator of nonlocal correlations in the system under consideration.  相似文献   

9.
利用两个二能级原子和用光纤联接的两个单模光腔构成的系统,给出了实现量子态转移的方案。该方案中两个二能级原子分别处于用光纤联接的单模腔中,并同时与光场发生共振相互作用。通过控制原子与光场的相互作用时间,实现量子态的转移。  相似文献   

10.
利用两个二能级原子和用光纤联接的两个单模光腔构成的系统,给出了实现量子态转移的方案。该方案中两个二能级原子分别处于用光纤联接的单模腔中,并同时与光场发生共振相互作用。通过控制原子与光场的相互作用时间,实现量子态的转移。  相似文献   

11.
12.
We study a generalized cold atom Bose-Hubbard model, where the periodic optical potential is formed by a cavity field with quantum properties. On the one hand, the common coupling of all atoms to the same mode introduces cavity-mediated long-range atom-atom interactions, and, on the other hand, atomic backaction on the field introduces atom-field entanglement. This modifies the properties of the associated quantum phase transitions and allows for new correlated atom-field states, including superposition of different atomic quantum phases. After deriving an approximative Hamiltonian including the new long-range interaction terms, we exhibit central physical phenomena at generic configurations of few atoms in few wells. We find strong modifications of population fluctuations and next-nearest-neighbor correlations near the phase transition point.  相似文献   

13.
We consider a quantum many-body system made of N interacting S=1/2 spins on a lattice, and develop a formalism which allows to extract, out of conventional magnetic observables, the quantum probabilities for any selected spin pair to be in maximally entangled or factorized two-spin states. This result is used in order to capture the meaning of entanglement properties in terms of magnetic behavior. In particular, we consider the concurrence between two spins and show how its expression extracts information on the presence of bipartite entanglement out of the probability distributions relative to specific sets of two-spin quantum states. We apply the above findings to the antiferromagnetic Heisenberg model in a uniform magnetic field, both on a chain and on a two-leg ladder. Using Quantum Monte Carlo simulations, we obtain the above probability distributions and the associated entanglement, discussing their evolution under application of the field.  相似文献   

14.
刘艳红  吴量  闫智辉  贾晓军  彭堃墀 《物理学报》2019,68(3):34202-034202
量子纠缠是一种重要的量子资源,在多个空间分离的量子存储器间建立确定性的量子纠缠,然后在用户控制的时刻将所存储的量子纠缠转移到量子信道中进行信息的分发和传送,这对于实现量子信息网络是至关重要的.本文介绍了用光学参量放大器制备与铷原子D1吸收线对应的非经典光场,而且在三个空间分离的原子系综中确定性量子纠缠的产生、存储和转移.利用电磁感应透明光和原子相互作用的原理,将制备的多组分光场纠缠态模式映射到三个远距离的原子系综以建立原子自旋波之间的纠缠.然后,存储在原子系综中的纠缠态通过三个量子通道,纠缠态的量子噪声被转移到三束空间分离的正交纠缠光场.三束释放的光场间纠缠的存在验证了该系统具有保持多组分纠缠的能力.这个方案实现了三个量子节点间的纠缠,并且可以直接扩展到具有更多节点的量子网络,为未来实现大型量子网络通信奠定了基础.  相似文献   

15.
The properties of quantum entanglement in the two-photon Tavis–Cummings model with a Kerr nonlinearity are studied in terms of quantum information entropy theory. The reduced quantum entropy is employed to investigate the quantum entanglement between two two-level atoms and a single-mode coherent field. The relative quantum entropy is employed to investigate the quantum entanglement between the two two-level atoms. The influences of the nonlinear interaction of the Kerr medium with the field and the atomic dipole-dipole interaction on the properties of quantum entanglement of the system are also examined. Some important results are obtained.  相似文献   

16.
17.
We examine the ability of quantum discord (QD) and entanglements (concurrence, EoF and negativity) to detect the critical points associated to quantum phase transitions (QPTs) for XY models, i.e., the isotropic XY model with three-spin interactions at zero temperature, and the anisotropic XY model in a transverse magnetic field h at finite temperatures. For the case of zero temperature, we found that both entanglements and QD can spotlight the critical points of QPTs for these two models. Moreover, QD versus distance M exhibits the long-range behavior of quantum correlation for the anisotropic XY model, while entanglement is short-ranged. For the case of finite temperatures, we found that negativity has the same behaviors with concurrence at or near transition points. Moreover, QD for the anisotropic XY model can increase with temperature even in the absence of a magnetic field.  相似文献   

18.
Through the Jordan-Wigner transformation, the entanglement entropy and ground state phase diagrams of exactly solvable spin model with alternating and multiple spin exchange interactions are investigated by means of Green's function theory. In the absence of four-spin interactions, the ground state presents plentiful quantum phases due to the multiple spin interactions and magnetic fields. It is shown that the two-site entanglement entropy is a good indicator of quantum phase transition (QPT). In addition, the alternating interactions can destroy the magnetization plateau and wash out the spin-gap of low-lying excitations. However, in the presence of four-spin interactions, apart from the second order QPTs, the system manifests the first order QPT at the tricritical point and an additional new phase called ``spin waves', which is due to the collapse of the continuous tower-like low-lying excitations modulated by the four-spin interactions for large three-spin couplings.  相似文献   

19.
We demonstrate a novel way to efficiently create a robust entanglement between an atomic and a photonic qubit. A single laser beam is used to excite one atomic ensemble and two different modes of Raman fields are collected to generate the atom-photon entanglement. With the help of built-in quantum memory, the entanglement still exists after 20.5 micros storage time which is further proved by the violation of Clauser-Horne-Shimony-Holt type Bell's inequality. The entanglement procedure can serve as a building block for a novel robust quantum repeater architecture [Zhao, Phys. Rev. Lett. 98, 240502 (2007)10.1103/PhysRevLett.98.240502] and can be extended to generate high-dimensional atom-photon entanglements.  相似文献   

20.
We report on a matter wave interferometer realized with entangled pairs of trapped 87Rb atoms. Each pair of atoms is confined at a single site of an optical lattice potential. The interferometer is realized by first creating a coherent spin superposition of the two atoms and then tuning the interstate scattering length via a Feshbach resonance. The selective change of the interstate scattering length leads to an entanglement dynamics of the two-particle state that can be detected in a Ramsey interference experiment. This entanglement dynamics is employed for a precision measurement of atomic interaction parameters. Furthermore, the interferometer allows us to separate lattice sites with one or two atoms in a nondestructive way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号