共查询到20条相似文献,搜索用时 0 毫秒
1.
Ken-ichiro Suzuki Naomi Takeuchi Kazuhiko Madokoro Chihiro Fushimi Shuiliang Yao Yuichi Fujioka Yoshimasa Nihei 《Analytical sciences》2008,24(2):253-256
The removal properties of diesel exhaust particles (DEP) were investigated using an engine exhaust particle size spectrometer (EEPS), field emission-type scanning electron microscopy (FE-SEM) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). DEP were treated using a dielectric barrier discharge (DBD) reactor installed in the tail pipe of a diesel engine, and a model DBD reactor fed with DEP in the mixture of N(2) and O(2). When changing the experimental parameters of both the plasma conditions and the engine load conditions, we obtained characteristic information of DEP treated with plasma discharges from the particle diameter and the composition. In evaluating the model DBD reactor, it became clear that there were two types of plasma processes (reactions with active oxygen species to yield CO(2) and reactions with active nitrogen species to yield nitrogen containing compounds). Moreover, from the result of a TOF-SIMS analysis, the characteristic secondary ions, such as C(2)H(6)N(+), C(4)H(12)N(+), and C(10)H(20)N(2)(+), were strongly detected from the DEP surfaces during the plasma discharges. This indicates that the nitrogen contained hydrocarbons were generated by plasma reactions. 相似文献
2.
S. V. Kudryashov G. S. Shchegoleva E. E. Sirotkina A. Yu. Ryabov 《High Energy Chemistry》2000,34(2):112-115
The oxidation of n-hexane, cyclohexane, cumene (isopropylbenzene), and cyclohexene in a barrier discharge reactor under conditions ensuring effective product transport out of the discharge zone was studied. It was shown that hydrocarbon oxidation reactions can be carried out in barrier discharge plasma reactors with a fairly high selectivity. The oxidation of n-hexane, cyclohexane, and cumene primarily yields the hydroxy and carbonyl compounds alcohols, aldehydes and ketones. The major product of cyclohexene oxidation is epoxycyclohexane (~62 wt %). 相似文献
3.
4.
Moo Been Chang Mark J. Kushner Mark J. Rood 《Plasma Chemistry and Plasma Processing》1992,12(4):565-580
A gas-phase oxidation method using dielectric barrier discharges (DBDs) has been developed to remove SO2 and to simultaneously remove SO2 and NO from gas streams that are similar to gas streams generated by the combustion of fossil fuels. SO2 and NO removal efficiencies are evaluated as a function of applied voltage, temperature, and concentrations of SO2, NO, H2O(g), and NH3. With constant H2O(g) concentration, both SO2 and NO removal efficiencies increase with increasing temperature from 100 to 160°C. At 160°C with 15% by volume H20(g), more than 95% of the NO and 32% of the S02 are simultaneously removed from the gas stream. Injection of NH3 into the gas stream caused an increase in S02 removal efficiency to essentially 100%. These results indicate that DBD plasmas have the potential to simultaneously remove SO2 and NO from gas streams generated by large-scale fossil fuel combustors. 相似文献
5.
S. V. Kudryashov A. Yu. Ryabov E. E. Sirotkina G. S. Shchegoleva 《Russian Journal of Applied Chemistry》2004,77(11):1904-1906
The oxidation of propylene and isobutylene in barrier-discharge plasma in the presence of octane was studied. The possible reaction mechanism was considered.Translated from Zhurnal Prikladnoi Khimii, Vol. 77, No. 11, 2004, pp. 1922–1924.Original Russian Text Copyright © 2004 by Kudryashov, Ryabov, Sirotkina, Shchegoleva. 相似文献
6.
A new atomizer based on atmospheric pressure dielectric barrier discharge (DBD) plasma was specially designed for atomic fluorescence spectrometry (AFS) in order to be applied to the measurement of arsenic. The characteristics of the DBD atomizer and the effects of different parameters (power, discharge gas, gas flow rate, and KBH4 concentration) were discussed in the paper. The DBD atomizer shows the following features: (1) low operation temperature (between 44 and 70 °C, depending on the operation conditions); (2) low power consumption; (3) operation at atmospheric pressure. The detection limit of As(III) using hydride generation (HG) with the proposed DBD-AFS was 0.04 μg L−1. The analytical results obtained by the present method for total arsenic in reference materials, orchard leaves (SRM 1571) and water samples GBW(E) 080390, agree well with the certified values. The present HG-DBD-AFS is more sensitive and reliable for the determination of arsenic. It is a very promising technique allowing for field arsenic analysis based on atomic spectrometry. 相似文献
7.
Martens T Bogaerts A Brok W van Dijk J 《Analytical and bioanalytical chemistry》2007,388(8):1583-1594
A model developed for a dielectric barrier discharge (DBD) in helium, used as a new spectroscopic source in analytical chemistry,
is presented in this paper. The model is based on the fluid approach and describes the behavior of electrons, He+ and ions, He metastable atoms, He atoms in higher excited levels, and He2 dimers. The He ground-state atoms are regarded as background gas. The characteristic effect of charging/discharging of the
dielectrics which cover both electrodes is also simulated. Typical results of the model include the distribution of potential
inside the plasma (and the potential drop across the dielectrics), the electric current and gap voltage as a function of time
for a given applied potential profile, the spatial and temporal number-density profiles of the different plasma species, and
the relative contributions of the mechanisms of their production and loss.
Figure Schematic diagram of the dielectric barrier discharge (left) and typical temporal profiles of voltage and current, as obtained
from the simulations (right) 相似文献
8.
Alexander A. Khassin Barbara L. Pietruszka Moritz Heintze Valentin N. Parmon 《Reaction Kinetics and Catalysis Letters》2004,82(1):131-137
Methane oxidation with air was studied over a Ni-containing catalyst in a dielectric barrier discharge (DBD) at temperatures
above 625 K. The DBD increases the methane conversion and shifts the process towards partial oxidation. This effect is related
to a catalyst heating by the discharge.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
9.
利用原位发射光谱表征和在线色谱分析,研究了甲醇介质阻挡放电脱氢偶联一步合成乙二醇反应中氢气的催化作用,考察了放电频率、甲醇和氢气进料量以及反应压力的影响.结果表明,在介质阻挡放电产生的非平衡等离子体中,H2不但能显著提高甲醇转化率,而且能显著提高乙二醇的选择性.在300°C,0.1 MPa,反应器注入功率为11 W,放电频率为12.0 k Hz,甲醇气体进料量为11.1 m L/min,氢气进料量为80–180 m L/min的条件下,甲醇转化率接近30%,乙二醇选择性大于75%.乙二醇收率与激发态氢原子的Hα谱线强度之间存在同增同减关系.由此推测,氢原子是起催化作用的活性氢物种.活性氢物种的生成途径是:基态氢分子通过与电子碰撞变成激发态,激发态氢分子通过第一激发态氢自动解离为基态氢原子.放电反应条件通过影响氢分子解离来影响氢气的催化作用.氢气在非平衡等离子体中显示的催化作用有可能为开辟新的化学合成途径提供重要机遇. 相似文献
10.
Development of a dielectric barrier discharge ion source for ambient mass spectrometry 总被引:4,自引:2,他引:4
Na N Zhao M Zhang S Yang C Zhang X 《Journal of the American Society for Mass Spectrometry》2007,18(10):1859-1862
A new ion source based on dielectric barrier discharge was developed as an alternative ionization source for ambient mass spectrometry. The dielectric barrier discharge ionization source, termed as DBDI herein, was composed of a copper sheet electrode, a discharge electrode, and a piece of glass slide in between as dielectric barrier as well as sample plate. Stable low-temperature plasma was formed between the tip of the discharge electrode and the surface of glass slide when an alternating voltage was applied between the electrodes. Analytes deposited on the surface of the glass slide were desorbed and ionized by the plasma and the ions were introduced to the mass spectrometer for mass analysis. The capability of this new ambient ion source was demonstrated with the analysis of 20 amino acids, which were deposited on the glass slide separately. Protonated molecular ions of [M + H](+) were observed for all the amino acids except for L-arginine. This ion source was also used for a rapid discrimination of L-valine, L-proline, L-serine and L-alanine from their mixture. The limit of detection was 3.5 pmol for L-alanine using single-ion-monitoring (SIM). Relative standard deviation (RSD) was 5.78% for 17.5 nmol of L-alanine (n = 5). With the advantages of small size, simple configuration and ease operation at ambient conditions, the dielectric barrier discharge ion source would potentially be coupled to portable mass spectrometers. 相似文献
11.
Soloshenko I. A. Tsiolko V. V. Pogulyai S. S. Terenteva A. G. Bazhenov V. Yu. Shchedrin A. I. Ryabtsev A. V. Kuzmichev A. I. 《Russian Journal of Physical Chemistry A, Focus on Chemistry》2006,80(1):S77-S84
The results of theoretical and experimental studies of the chemical composition of the ensemble of active species formed in a plasmochemical reactor that consists of a multicell bulk-barrier-discharge generator of active species and a working chamber are presented. To calculate the composition of the neutral species in the barrier discharge, an approach based on the averaging of the power input over the entire volume of the discharge gap was proposed. One advantage of this approach is that it involves no adjustable parameters, such as the sizes of the microdischarges, their surface density, and frequency of breakdowns. The calculations and measurements were performed using dry air (with a relative humidity of 20%) as the plasma-forming medium. The concentrations of O3, HNO3, HNO2, N2O5, and NO3 in the discharge gap and working chamber were measured at a mean residence time of the species in the discharge gap of τ = 0.3 s and a specific power input of 1.5 W/cm3. The best agreement between the calculation results and the experimental data was obtained when the temperature of the gas mixture in the discharge was set equal to 400–425 K, a value that coincided with the measured rotational temperature of molecular nitrogen. Generally, the calculated and measured concentrations of O3, HNO3, HNO2, N2O5, and NO3 in both the bulk barrier discharge and the working chamber were found to be in close agreement. 相似文献
12.
Among different applications of dielectric barrier discharge (DBD) plasma, the soft ionization ability is certainly one of the most interesting. In this paper the helium plasma jet, produced by a capillary DBD, penetrating in the ambient atmosphere, has been spectroscopically investigated in dependence on applied voltage and helium flow. It was found that the change of the applied voltage leads to different discharge modes. Based on the measurements of the emission spectra of atomic He and N2+ and N2 molecules in the capillary and in the plasma jet with high spatial resolution, it can be assessed in which mode, i.e. under which conditions the plasma jet is expected to be most effective for soft ionization of molecules. 相似文献
13.
Cordula Meyer Saskia Müller Bienvenida Gilbert-Lopez Joachim Franzke 《Analytical and bioanalytical chemistry》2013,405(14):4729-4735
The present study contributes to the evaluation of dielectric barrier discharge-based ambient ionization for mass spectrometric analysis (DBDI-MS) by providing a further step towards an understanding of underlying ionization processes. This examination highlights the effect of physical discharge modes on the ionization efficiency of the DBDI source. A distinction is made between the homogeneous and filamentary discharge mode due to different plasma gases in barrier configurations. Therefore, we first report on discharge modes of DBDI by demonstrating a universally applicable method to classify the predominant modes. Then, the ionization efficiency of these two modes is evaluated by a laser desorption-DBDI-MS with different molecular analytes. Here, the laser desorption is used to deliver neutral analytes which will be ionized by the plasma jet applied as dielectric barrier discharge ionization. With a clear increase of signal intensities in the homogeneous mode in contrast to the filamentary one, the present study indicates a pronounced dependence of the ionization efficiency on the discharge mode allowing further insight into the mechanisms of the ionization process. Figure
He-DBD-jet, propazine mass spectrum, MHCD 相似文献
14.
15.
The destruction of atmospheric pressure propane and propene using a surface discharge plasma reactor
Surface discharge plasma reactors (SDRs) have been shown to be effective in removing a wide range of pollutants. In this study, the effectiveness of a SDR for the removal of propane and propene from an atmospheric pressure air stream was investigated. For an input energy of 100 J L-1, the conversions were found to be 16% and 68% for propane and propene, respectively. The total carbon recovery was found to increase with increasing specific input energy (SIE) for both hydrocarbons. FTIR analysis showed that CO and CO2 are the major end-products, and GC-MS identified formic acid as a significant byproduct. The effect of initial propane concentration was also investigated. The reaction chemistry involved in the oxidative plasma conversion of propane and propene is discussed. 相似文献
16.
The conversion of C1–C4 hydrocarbons into gaseous and liquid products in a dielectric barrier discharge plasma in the presence of water has been studied. The formation of a deposit on the electrode surface is prevented by introducing water in the liquid state into a gaseous hydrocarbon stream, a finding that has been confirmed by IR spectroscopic study of the electrode surface. Hydrogen and C2+ hydrocarbons have been detected among the gaseous products of conversion, the liquid products being represented by C6–C10+ alkanes. The total liquid products have amounted to 13.4, 26.0, or 36.6% for the methane, propane, or n-butane conversion, respectively. A 10% propane or butane admixture to methane increases the yield of the liquid products to make 22.0 and 31.7% for the methane–propane and the methane–butane mixture, respectively. 相似文献
17.
Zhenli Zhu Jixin Liu Sichun Zhang Xing Na Xinrong Zhang 《Spectrochimica Acta Part B: Atomic Spectroscopy》2008
A flameless atomizer for atomic fluorescence spectrometry (AFS), based on an atmospheric pressure dielectric barrier discharge, has been developed for the atomization of hydride-forming elements, such as Se, Sb and Pb. The atomizer (8 mm o.d, 35 mm length) was operated at a power less than 50 W. The discharge was sustained with argon at the flow rate of 0.85 L min− 1 after optimization. The characteristics of the atomizer and the effects of different parameters (power, gas flow rate, and KBH4 concentration) are investigated. The most attractive feature of this atomizer is its low operation temperature (~ 52 °C, detected at the outlet of the atomizer by a thermocouple), allowing both the radiation source and the detector to be placed in close proximity with the atomizer. The analytical performance of the atomizer has been evaluated, and detection limits for Se, Sb and Pb obtained with the present technique were 0.08, 0.11 and 0.27 μg L− 1, respectively. The accuracy of the system was verified by the determination of Se, Sb and Pb in reference material of spinage GBW 10015. The concentrations of Se, Sb, and Pb determined by the present technique agreed well with the reference values (Se: 92 ± 24 mg kg− 1, Sb: 43 ± 14 mg kg− 1, Pb: 11.1 ± 0.9 mg kg− 1). This detector is very promising for field elements detection with portable AFS. 相似文献
18.
Conclusions Oxygen difluoride was obtained in a silent (barrier) electrical discharge by circulating a mixture of fluorine and oxygen.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 9, pp. 2127–2128, September, 1977. 相似文献
19.
I. P. Stolyarov L. I. Demina N. V. Cherkashina 《Russian Journal of Inorganic Chemistry》2011,56(10):1532-1537
Comparison of various laboratory procedures for the synthesis of palladium acetate demonstrated that the purest product containing no nitrite or nitrate impurities is formed in up to 90% yields upon the reaction of palladium nitrate with alkali metal acetates in aqueous acetic acid. Other laboratory syntheses are more labor-consuming and do not ensure high purity of the product. The synthesis by-products are described and possible reaction schemes are proposed. 相似文献
20.
S.B. Olenici-Craciunescu S. Müller A. Michels V. Horvatic C. Vadla J. Franzke 《Spectrochimica Acta Part B: Atomic Spectroscopy》2011,66(3-4):268-273
An atmospheric pressure microplasma ionization source based on a dielectric barrier discharge with a helium plasma cone outside the electrode region has been developed for liquid chromatography/mass spectrometry and as ionization source for ion mobility spectrometry. It turned out that dielectric barrier discharge ionization could be regarded as a soft ionization technique characterized by only minor fragmentation similar to atmospheric pressure chemical ionization (APCI). Mainly protonated molecules were detected. In order to characterize the soft ionization mechanism spatially resolved optical emission spectrometry (OES) measurements were performed on plasma jets burning either in He or in Ar. Besides to spatial intensity distributions of noble gas spectral lines, in both cases a special attention was paid to lines of N2+ and N2. The obtained mapping of the plasma jet shows very different number density distributions of relevant excited species. In the case of helium plasma jet, strong N2+ lines were observed. In contrast to that, the intensities of N2 lines in Ar were below the present detection limit. The positions of N2+ and N2 distribution maxima in helium indicate the regions where the highest efficiency of the water ionization and the protonation process is expected. 相似文献