首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 319 毫秒
1.
Multi-walled carbon nanotubes (MWCNTs) have been chemically derivatised via the reduction of anthraquinone-1-diazonium chloride with hypophosphorous acid to attach 1-anthraquinonyl groups to the MWCNTs, most likely at edge plane like defects. The covalently attached quinone moiety attached to the nanotubes (‘molecular wire’) acts as an effective mediator for the electrocatalytic reduction of oxygen.  相似文献   

2.
Multiwalled carbon nanotubes (MWCNTs) were covalently modified with polymer-coated superparamagnetic Fe3O4 nanoparticles via amide bond formation to surface oxo-groups located predominantly at the ends of the nanotubes to form “magnetic MWCNTs”. The sidewalls of the magnetic MWCNTs were then selectively covalently modified with ferrocenyl groups via the photolysis of 3-[3-(trifluoromethyl) diazirin-3-yl] phenyl ferrocene monocarboxylate, which uses an aryldiazirine moiety as a molecular “tether”. We demonstrate that the assembly of the chemically-modified magnetic MWCNTs onto the surface of a magnetic carbon electrode enables one to obtain stable voltammetric signals of chemically-modified carbon nanotubes in non-aqueous electrolytes even under vigorous hydrodynamic conditions of stirring at 3000 rpm for up to twenty minutes. In contrast, non-magnetic chemically modified MWCNTs are removed from the electrode surface within the first two minutes of stirring.  相似文献   

3.
In water, synthetic amphiphiles composed of a photoresponsive azobenzene moiety and an oligoglycine hydrogen‐bonding moiety selectively self‐assembled into nanotubes with solid bilayer membranes. The nanotubes underwent morphological transformations induced by photoisomerization of the azobenzene moiety within the membranes, and the nature of the transformation depended on the number of glycine residues in the oligoglycine moiety (i.e., on the strength of intermolecular hydrogen bonding). Upon UV‐light irradiation of nanotubes prepared from amphiphiles with the diglycine residue, trans‐to‐cis isomerization induced a transformation from nanotubes (inner diameter (i.d.) 7 nm), several hundreds of nanometers to several tens of micrometers in length, to imperfect nanorings (i.d. 21–38 nm). The cis‐to‐trans isomerization induced by continuous visible‐light irradiation resulted in the stacking of the imperfect nanorings to form nanotubes with an i.d. of 25 nm and an average length of 310 nm, which were never formed by a self‐assembly process. Time‐lapse fluorescence microscopy enabled us to visualize the transformation of nanotubes with an i.d. of 20 nm (self‐assembled from amphiphiles with the monoglycine residue) to cylindrical nanofibers with an i.d. of 1 nm; shrinkage of the hollow cylinders started at the two open ends with simultaneous elongation in the direction of the long axis.  相似文献   

4.
The influence of both nanotube orientation and length on the electrochemical properties of electrodes modified with single-walled carbon nanotubes was investigated. Gold electrodes were modified with either randomly dispersed or vertically aligned nanotubes to which ferrocenemethylamine was attached. Electron transfer kinetics were found to depend strongly on the orientation of the nanotube, with electron transfer between the gold electrode and the ferrocene moiety being 40 times slower through randomly dispersed nanotubes than through vertically aligned nanotubes. The difference is hypothesized to be due to electron transfer being more direct through a single tube than that with electrodes modified with randomly dispersed nanotubes. With the vertically aligned nanotubes the rate constant for electron transfer varied inversely with the mean length of the nanotubes. The results indicate there is an advantage in using aligned carbon nanotube arrays over randomly dispersed nanotubes for achieving efficient electron transfer to bound redox active species such as in the case of bioelectronic or photovoltaic devices.  相似文献   

5.
Organic functionalization of carbon nanotubes   总被引:11,自引:0,他引:11  
A very general and versatile method for functionalizing different types of carbon nanotubes is described, using the 1,3-dipolar cycloaddition of azomethine ylides. Approximately one organic group per 100 carbon atoms of the nanotube is introduced, to yield remakably soluble bundles of nanotubes, as seen in transmission electron micrographs. The solubilization of the nanotubes generates a novel, interesting class of materials, which combines the properties of the nanotubes and the organic moiety, thus offering new opportunities for applications in materials science, including the preparation of nanocomposites.  相似文献   

6.
Lawrence NS  Robinson KL 《Talanta》2007,74(3):365-369
The effect of carbon nanotubes on the electrochemical response of the pH sensing, redox-active copolymer poly(vinylanthracene-co-vinylferrocene) has been studied. A clear increase in the linear response of the anthracene moiety with pH is observed in the presence of carbon nanotubes.  相似文献   

7.
In this study, we report a simple procedure for applying molecular imprinting functional groups to the inner surfaces of the template-synthesized sol-gel nanotubes for chemical separation of estrone. The silica nanotubes were synthesized within the pores of nanopore alumina template membranes using a sol-gel method by simultaneous hydrolysis of a silica monomer-imprinted molecule complex and tetraethoxysilane (TEOS). A covalent imprinting strategy was employed by generating a sacrificial spacer through the reaction of the isocyanate group of 3-(triethoxysilyl)propyl isocyanate and a phenol moiety of estrone to form a thermally cleavable urethane bond. This allowed us to remove the imprinted estrone by simple thermal reaction and to simultaneously introduce functional groups into the cavity formed by the silica nanotubes. Experiments indicated that estrone could be bound selectively by such an approach and have a binding affinity of 864 +/- 137 (n = 3).  相似文献   

8.
A novel approach to solubilize single‐walled carbon nanotubes (SWCNTs) in the aqueous phase is described by employing supramolecular surface modification. We use cyclodextrin complexes of synthetic molecules that contain a planar pyrene moiety or a bent, shape‐fitted triptycene moiety as a binding group connected through a spacer to an adamantane moiety that is accommodated in the cyclodextrin cavity. The binding groups attach to the sidewalls of SWCNTs through a π–π stacking interaction to yield a supramolecular system that allows the SWCNTs to dissolve in the aqueous phase through the formed hydrophilic cyclodextrin shell. The black aqueous SWCNT solutions obtained are stable over a period of months. They are characterized through absorbance, static, and time‐resolved fluorescence spectroscopy as well as Raman spectroscopy, TEM, and fluorescence‐decay measurements. Furthermore, the shape‐fitted triptycene‐based system shows a pronounced selectivity for SWCNTs with a diameter of 1.0 nm.  相似文献   

9.
On the basis of transmission electron microscopy (TEM), dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and circular dichroism (CD) studies, compound 1 was shown to exist mainly in two states: (a) At high concentration (> or =1 mM, in methanol), 1 undergoes hierarchical self-assembly to generate rosette nanotubes with approximately 4 nm diameter and a concentration-dependent hydrodynamic radius in the range 10-100 nm. Under these conditions, addition of a chiral amino acid promoter (L-Ala), that binds to the crown ether moiety of 1 via electrostatic interactions, promotes a rapid transition (k(0) approximately equal 0.48 s(-1), for [1] = 0.046 mM, [L-Ala] = 2.8 mM) from racemic to chiral rosette nanotubes with predefined helicities as indicated by the resulting induced circular dichroism (ICD). (b) At low concentration (< or =0.04 mM, in methanol), 1 exists mainly in a nonassembled state as shown by TEM and DLS. Addition of L-Ala in this case triggers a relatively slow (k(0) approximately equal 0.07 s(-1) for [1] = 0.04 mM, [L-Ala] = 2.4 mM) sequence of supramolecular reactions leading to the hierarchical self-assembly of rosette nanotubes with predefined helicities. Under both conditions a and b, the kinetic data unveiled the intrinsic ability of the rosette nanotubes to promote their own formation (autocatalysis). The degree of chiral induction was found to depend dramatically upon the chemical structure of the promoter. This process appears also to follow an all-or-none response, as the vast majority of the crown ether sites must be occupied with a promoter for a complete transition to chiral nanotubes to take place. Finally, both supramolecular pathways a and b offer an efficient approach for the preparation of helical rosette nanotubes with tunable chiroptical properties and may also be viewed as a process by which a predefined set of physical and chemical properties that characterizes a molecular promoter is expressed at the macromolecular level.  相似文献   

10.
Size‐controlled and ordered assemblies of artificial nanotubes are promising for practical applications; however, the supramolecular assembly of such systems remains challenging. A novel strategy is proposed that can be used to reinforce intermolecular noncovalent interactions to construct hierarchical supramolecular structures with fixed sizes and long‐range ordering by introducing ionic terminals and fully rigid arms into benzene‐1,3,5‐tricarboxamide (BTA) molecules. A series of similar BTA molecules with distinct terminal groups and arm lengths are synthesized; all form hexagonal bundles of helical rosette nanotubes spontaneously in water. Despite differences in molecular packing, the dimensions and bundling of the supramolecular nanotubes show almost identical concentration dependence for all molecules. The similarities of the hierarchical assemblies, which tolerate certain molecular irregularities, can extend to properties such as the void ratio of the nanotubular wall. This is a rational strategy that can be used to achieve supramolecular nanotubes in aqueous environments with precise size and ordering at the same time as allowing molecular modifications for functionality.  相似文献   

11.
Wirtz M  Yu S  Martin CR 《The Analyst》2002,127(7):871-879
We have developed a new class of synthetic membranes that consist of a porous polymeric support that contains an ensemble of gold nanotubes that span the thickness of the support membrane. The support is a commercially-available microporous polycarbonate filter with cylindrical nanoscopic pores. The gold nanotubes are prepared via electroless deposition of Au onto the pore walls; i.e., the pores acts as templates for the nanotubes. We have shown that by controlling the Au deposition time, Au nanotubes that have effective inside diameters of molecular dimensions (< 1 nm) can be prepared. These membranes are a new class of molecular sieves and can be used to separate both small molecules and proteins on the basis of molecular size. In addition, the use of these membranes in new approaches to electrochemical sensing is reviewed here. In this case, a current is forced through the nanotubes, and analyte molecules present in a contacting solution phase modulate the value of this transmembrane current.  相似文献   

12.
以介孔分子筛为金属催化剂载体制备纳米碳管   总被引:2,自引:0,他引:2  
 以不同的介孔分子筛作为金属催化剂载体,对催化合成纳米碳管进行了系统的研究,讨论了反应条件对纳米碳管纯度和产量的影响. 结果表明,不同的介孔分子筛对金属活性中心的形成、碳组分的扩散、纳米碳管的管径及形态均有明显的影响. 此外,金属的种类、状态和含量也影响纳米碳管的合成. 探索了合成高产量纳米碳管的条件,并对介孔分子筛上生长纳米碳管的特点进行了讨论.  相似文献   

13.
Cardinality guided molecular tailoring approach (CG-MTA) [Ganesh et al. J. Chem. Phys. 2006, 125, 104019] has been effectively employed to perform ab initio calculations for large molecular clusters of boric acid. It is evident from the results that boric acid forms nanotubes, structurally similar to carbon nanotubes, with the help of an extensive hydrogen-bonding (H-bonding) network. Planar rosette-shaped hexamer of boric acid is the smallest repeating unit in such nanotubes. The stability of these tubes increases due to enhancement in the number of H-bonding interactions as the diameter increases. An analysis of molecular electrostatic potential (MESP) of these systems provides interesting features regarding the reactivity of these tubes. It is predicted that due to alternate negative and positive potentials on O and B atoms, respectively, boric acid nanotubes will interact favorably with polar systems such as water and can also form multiwalled tubes.  相似文献   

14.
Diverse chemical functionalization of the inner and outer surfaces of the nanotubes enables us to sense and visualize the encapsulation and transport behavior of biomacromolecular guests. The event occurs specifically in attoliter volume nanospace inside the hollow cylinder of the nanotubes. Comparison of the organic nanotube history with that of well‐known carbon nanotubes and a variety of molecular building blocks as tube‐forming compounds were first introduced. Asymmetric organic nanotubes with different inner and outer surfaces were discussed in terms of molecular design, immobilization of functional moieties, and molecular packing. Finally, the practical examples of the organic nanotubes as a nanocontainer, nanochannel, and nanopipette were also described to feature the concept of “attoliter chemistry.” © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2601–2611, 2008  相似文献   

15.
Introduction of self-assembly in nanometer-sized building blocks is expected to accomplish bottom-up fabrications in a more reproducible, efficient, and economic manner; however, it is necessary to selectively place multiple types of nano-building blocks (e.g., metal nanotubes and semiconductor nanotubes) at specific locations on surfaces with high precision and reproducibility for more complex nanometer-scale device assemblies. Biological molecular recognition such as antibody-antigen bindings may be suitable to use in the building-block assembly since nature always assembles materials with complex functions and structures at room temperature reproducibly. Our approach is to immobilize antibody-coated nanotubes at specific complementary binding positions patterned on surfaces. To demonstrate this hypothesis, two types of nanotubes coated with different antibodies were anchored selectively onto their complementary antigen areas, patterned by tips of atomic force microscope (AFM). Because those nanotubes can be coated by various metals and semiconductors with controlled morphologies, this outcome opens the possibility to accomplish the proposed unconventional device fabrication methodology that antibody nanotubes coated with different types of metals/semiconductors can be self-assembled on antigen-patterned surfaces via biological molecular recognition.  相似文献   

16.
Many properties of silicon carbide (SiC) nanotubes, such as their high mechanical strength and resistance to corrosive environments, are superior to those of their carboneous counterparts, namely, carbon nanotubes (CNTs) and, therefore, SiC nanotubes can be a viable alternative to CNTs in a variety of applications. We employ molecular dynamics simulations to examine flow of water in SiC nanotubes and to study the differences and similarities with the same phenomenon in the CNTs. The simulations indicate that SiC nanotubes always provide larger flow enhancements than those reported for the CNTs. Moreover, a given flow enhancement in SiC nanotubes requires an applied pressure gradient that is at least an order of magnitude smaller than the corresponding value in a CNT of the same size.  相似文献   

17.
18.
In this paper, ice nanotubes confined in carbon nanotubes are investigated by molecular dynamics. The trigonal, square, pentagonal, and hexagonal water tubes are obtained, respectively. The current-voltage (I-V) curves of water nanotubes are found to be nonlinear, and fluctuations of conductance spectra of these ice nanotubes show that the transport properties of ice nanotubes are quite different from those of bulk materials. Our studies indicate that the conductance gap of ice nanotube is related to the difference value from the Fermi energy EF to the nearest molecular energy level E0. Increasing the diameter of a water molecular nanostructure results in the increase of the conductance.  相似文献   

19.
The use of selective interactions between conjugated polymers and single‐walled carbon nanotubes has emerged as a promising method for the separation of nanotubes by electronic type. Although much attention has been devoted to investigating polyfluorenes and their ability to disperse semiconducting carbon nanotubes under specific conditions, other polymer families, such as poly(2,7‐carbazole)s, have been relatively overlooked. Poly(2,7‐carbazole)s have been shown to also preferentially interact with semiconducting carbon nanotubes, however a detailed investigation of polymer parameters, such as molecular weight, has not been performed. We have prepared seven different molecular weights of a poly(2,7‐carbazole), from short chain oligomers to high molecular weight polymers, and have investigated their effectiveness at dispersing semiconducting single‐walled carbon nanotubes. Although all polymer chain lengths were able to efficiently exfoliate carbon nanotube bundles using a mild dispersion protocol, only polymers above a certain threshold molecular weight (Mn ~ 27 kDa) were found to exhibit complete selectivity for semiconducting nanotubes, with no observable signals from metallic species. Additionally, we found the quality of separation to be strongly dependent on the ratio of polymer to carbon nanotube. Contrary to previous reports, we have found that an excess of poly(2,7‐carbazole) leads to incomplete removal of metallic carbon nanotubes. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2510–2516  相似文献   

20.
We report the synthesis and encapsulation properties of long (up to 5 nm) molecular nanotubes 1-4, which are based on calix[4]arenes and can be filled with multiple nitrosonium (NO(+)) ions upon reaction with NO(2)/N(2)O(4) gases. These are among the largest nanoscale molecular containers prepared to date and can entrap up to five guests. The structure and properties of tubular complexes 1(NO(+))(2)-4(NO(+))(5) were studied by UV/Vis, FTIR, and (1)H NMR spectroscopy in solution, and also by molecular modeling. Entrapment of NO(+) in 1(NO(+))(2)-4(NO(+))(5) is reversible, and addition of [18]crown-6 quickly recovers starting tubes 1-4. The FTIR and titration data revealed enhanced binding of NO(+) in longer tubes, which may be due to cooperativity. The described nanotubes may serve as materials for storing and converting NO(x) and also offer a promise to further develop supramolecular chemistry of molecular containers. These findings also open wider perspectives towards applications of synthetic nanotubes as alternatives to carbon nanotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号