首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The equilibrium stability of a fluid, heated from below, in a rectangular cavity with a vertical permeable partition is investigated. The small perturbation problem is solved by the Galerkin-Kantorovich method. The relations obtained for the dependence of the critical Rayleigh numbers on the partition parameters and the cavity dimensions make it possible to identify regions in which either even or odd perturbations, sensitive to only the normal or only the tangential resistance of the partition, respectively, are responsible for equilibrium crisis. The effect of a permeable partition on the convective instability of a horizontal layer of fluid under various heating conditions was considered in [1–3], where a significant dependence of the critical Rayleigh numbers on the properties of the partition was established.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 6–10, May–June, 1989.  相似文献   

2.
In a two-layer system loss of stability may be monotonic or oscillatory in character. Increasing oscillatory perturbations have been detected in the case of both Rayleigh [1, 2] and thermocapillary convection [3–5]; however, for many systems the minimum of the neutral curve corresponds to monotonic perturbations. In [5] an example was given of a system for which oscillatory instability is most dangerous when the thermogravitational and thermocapillary instability mechanisms are simultaneously operative. In this paper the occurrence of convection in a two-layer system due to the combined action of the Rayleigh (volume) and thermocapillary (surface) instability mechanisms is systematically investigated. It is shown that when the Rayleigh mechanism operates primarily in the upper layer of fluid, in the presence of a thermocapillary effect oscillatory instability may be the more dangerous. If thermogravitational convection is excited in the lower layer of fluid, the instability will be monotonic.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 166–170, January–February, 1987.  相似文献   

3.
The effect of weak mixture concentration on the threshold of convective instability of a binary mixture filling a cavity of arbitrary shape is investigated. In the case of thermally insulated boundaries in the neighborhood of the critical Rayleigh number monotonicity of perturbations is proved. This makes it possible to express the critical Rayleigh number for the mixture in terms of its analog for a single-component fluid at any values of the Soret parameter. In the general case of boundaries of arbitrary thermal conductivity an estimate of the critical Rayleigh number is obtained for small values of the Soret parameter.Perm'. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 161–165, November–December, 1996.  相似文献   

4.
The Brinkman extended Darcy model including Lapwood and Forchheimer inertia terms with fluid viscosity being different from effective viscosity is employed to investigate the effect of vertical throughflow on thermal convective instabilities in a porous layer. Three different types of boundary conditions (free–free, rigid–rigid and rigid–free) are considered which are either conducting or insulating to temperature perturbations. The Galerkin method is used to calculate the critical Rayleigh numbers for conducting boundaries, while closed form solutions are achieved for insulating boundaries. The relative importance of inertial resistance on convective instabilities is investigated in detail. In the case of rigid–free boundaries, it is found that throughflow is destabilizing depending on the choice of physical parameters and the model used. Further, it is noted that an increase in viscosity ratio delays the onset of convection. Standard results are also obtained as particular cases from the general model presented here.  相似文献   

5.
The effect of the Coriolis force on the onset of convection in a plane horizontal layer of viscous fluid with a fixed heat flux on the rigid lower and free upper boundaries is investigated. Expressions for the critical Rayleigh numbers and wave number are obtained analytically in the rapid rotation limit.Perm'. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 42–46, May–June, 1994.  相似文献   

6.
This study examines the stability of a horizontally extended second-grade fluid layer heated from below, when a steady temperature difference between the walls is superimposed on sinusoidal temperature perturbations. A linear stability analysis proposed by Venezian (J. Fluid Mech. 35 (1969) 243) is employed to obtain the critical Rayleigh numbers for different types of temperature modulation. The free–free and isothermal boundary conditions are considered so as to allow analytic solutions. The stability characterized by the shift in critical Rayleigh number R2c is calculated as a function of the modulation frequency ω, the Prandtl number Pr, and the viscoelastic parameter Q. It is found that the onset of convection can be delayed or advanced by these parameters.  相似文献   

7.
The theory of creeping motion is used to study the relaxation of an infinite viscous fluid layer (membrane) of nonuniform thickness. The propagation of boundary perturbations in a semi-infinite layer under the action of surface-tension forces is also considered. The layer has at least one common boundary with a gas. It is found that relaxation processes of an infinite layer or the propagation of boundary perturbations inside a bounded layer are non-monotonic, and that wave-like surface perturbations always arise. Relaxation times are determined. Maximum distances are found over which separate regions of the layer can affect each other.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 11, No. 1, pp. 73–77, January–February, 1970.The author wishes to thank V. G. Levich for discussions.  相似文献   

8.
The stability of the equilibrium state of a flat layer bounded by rigid walls is studied using a microconvection model. The behavior of the complex decrement for longwave perturbations has an asymptotic character. Calculations of the full spectral problem were performed for melted silicon. Unlike in the classical Oberbeck–Boussinesq model, the perturbations in the microconvection model are not monotonic. It is shown that for small Boussinesq parameters, the spectrum of this problem approximates the spectra of the corresponding problems for a heatconducting viscous fluid or thermal gravitational convection when the Rayleigh number is finite.  相似文献   

9.
We consider the stationary plane-parallel convective flow, studied in [1], which appears in a two-dimensional horizontal layer of a liquid in the presence of a longitudinal temperature gradient. In the present paper we examine the stability of this flow relative to small perturbations. To solve the spectral amplitude problem and to determine the stability boundaries we apply a version of the Galerkin method, which was used earlier for studying the stability of convective flows in vertical and inclined layers in the presence of a transverse temperature difference or of internal heat sources (see [2]). A horizontal plane-parallel flow is found to be unstable relative to two critical modes of perturbations. For small Prandtl numbers the instability has a hydrodynamic character and is associated with the development of vortices on the boundary of counterflows. For moderate and for large Prandtl numbers the instability has a Rayleigh character and is due to a thermal stratification arising in the stationary flow.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 95–100, January–February, 1974.  相似文献   

10.
The stability of advective flow in a rotating infinite horizontal fluid layer with rigid bound-aries is investigated for a small Prandtl number Pr = 0.1 and various Taylor numbers for perturbations of the hydrodynamic type. Within the framework of the linear theory of stability, neutral curves describing the dependence of the critical Grashof number on the wave number are obtained. The behavior of finite-amplitude perturbations beyond the stability threshold is studied numerically.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, 2005, pp. 29–38.Original Russian Text Copyright © 2005 by Schwarz.  相似文献   

11.
The instability of barrel-shaped vibrations of a vortex ring in an ideal fluid is investigated. These vibrations, stable for a vortex ring with a piecewise-uniform vorticity profile, appear to be unstable for a vortex ring with a smooth vorticity profile. The instability growth rate is found on the basis of the energy balance equation determining the energy transport from perturbations with negative energy in the critical layer to perturbations with positive energy in the rest of the flow. The curvature of the vortex ring, by virtue of which the perturbations with energies of different signs appear to be connected, plays a prominent role in the mechanism under consideration.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 72–78, November–December, 1995.  相似文献   

12.
The effect of the position of the inversion point within the layer on the critical values of the Rayleigh number and the amplitudes of the rectangular-cell convective flows is numerically investigated. The monotonic instability of the mechanical equilibrium of the fluid with respect to small perturbations periodic along the layer is studied by the linearization method. The Lyapunov-Schmidt method is used to construct the secondary steady convective flows. The applicability of these methods in incompressible fluid stability problems was demonstrated in [8–10]. The calculations show that, starting from a certain value of the parameter , the branching is subcritical for any cell side ratio and a fixed wave vector modulus. For smaller values of the nature of the branching depends on the cell side ratio. This points to subcritical branching and hysteresis effects in those cases in which the periodicity of the perturbations is determined by external factors (corrugation of the boundary, spatially periodic temperature modulation, etc.). It is noted that the rectangular convection amplitude tends to zero when the cell side ratio tends to 3, the value at which hexagonal cellular convection is possible.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 43–49, January–February, 1989.The author wishes to thank V. I. Yudovich for his interest and useful advice and the participants in the Rostov State University Computational Mathematics Department's Scientific Seminar for discussing the results.  相似文献   

13.
The equilibrium stability is investigated of a system consisting of two semi-infinite isothermal masses of fluid divided by a horizontal layer of finite thickness of the same fluid with a vertical temperature gradient directed downwards. The transition layer is separated by thin permeable membranes. Neutral stability curves are constructed for different membrane resistances. In the case of high permeability, the equilibrium is absolutely unstable with respect to monotonic-type longwave perturbations. For low permeability membranes, instability with respect to monotonic finite-wavelength perturbations is characteristic.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 171–173, July–August, 1985.  相似文献   

14.
A Blasius laminar boundary layer and a steady turbulent boundary layer on a flat plate in an incompressible fluid are considered. The spectral characteristics of the Tollmien—Schlichting (TS) and Squire waves are numerically determined in a wide range of Reynolds numbers. Based on the spectral characteristics, relations determining the three–wave resonance of TS waves are studied. It is shown that the three–wave resonance is responsible for the appearance of a continuous low–frequency spectrum in the laminar region of the boundary layer. The spectral characteristics allow one to obtain quantities that enter the equations of dynamics of localized perturbations. By analogy with the laminar boundary layer, the three–wave resonance of TS waves in a turbulent boundary layer is considered.  相似文献   

15.
The problem of the convection of a weakly compressible fluid is considered. In the free convection equations a heat source function is taken into account. The stability of the equilibrium state of a horizontal layer relative to small perturbations is studied using the linearization method. On the basis of numerical calculations it is shown that the mechanical equilibrium state of the fluid is unstable. The neutral curves are plotted and the critical Rayleigh numbers are found. In the calculations values of the physical parameters typical of Lake Baikal were used.  相似文献   

16.
In this paper we study the stability of the equilibrium of a liquid heated from below, wherein the liquid saturates a planar layer of a porous medium arbitrarily inclined to the direction of gravity. We consider the cases for which the boundaries of the layer are heat-conducting and also thermally insulated. In a horizontal layer with heat-conducting boundaries equilibrium is destroyed by perturbations of cellular structure [1], In a vertical layer the minimum critical temperature gradient corresponds to perturbations of plane-parallel structure. The transition to cellular perturbations in the case of heat-conducting boundaries takes place at an arbitrarily small angle of inclination of the layer to the vertical. For the thermally insulated layer the crisis of equilibrium is connected with plane-parallel perturbations at all angles of inclination.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 127–131, May–June, 1973.The author thanks G. Z. Gershuni for stating the problem and his interest in the work.  相似文献   

17.
The equilibrium of a fluid is possible in a closed cavity in the presence of a strictly vertical temperature gradient (heating from below) [1]. There is a distinct sequence of critical Rayleigh numbers Ri at which this equilibrium loses its stability relative to low characteristic perturbations. The presence of different finite perturbations, unavoidable in an experiment, leads to the absence of a strict equilibrium when R < R1. The problem of the influence of the perturbation on the convection conditions near the critical points arises in this context [2, 3]. The case in which the cavity is heated not strictly from below is investigated in [2] and the case in which the perturbation of the equilibrium is due to the slow movement of the upper boundary of the region is investigated in [3]. In [2, 3] the perturbation has the structure of a first critical motion and thus the results of these papers coincide qualitatively. The perturbation of the temperature in the horizontal sections of the boundary, which creates a perturbation with a two-vortex structure corresponding to the second critical point R2, is examined in this paper. A similar type of perturbation is characteristic for experiments in which the thermal conductivity properties of the fluid and the cavity walls are different. The nonlinear convection conditions are investigated numerically by the net-point method.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 203–207, March–April, 1977.The author wishes to thank D. B. Lyubimova, V. I. Chernatynskii, and A. A, Nepomnyashchii for their helpful comments.  相似文献   

18.
Thermal convection is studied in an inhomogeneous medium consisting of a fluid and a solid admixture under conditions of finite–frequency vibrations. Convection equations are derived within the framework of the generalized Boussinesq approximation, and the problem of flow stability in a vertical layer of a viscous fluid with horizontal oscillations along the layer to infinitely small perturbations is considered. A comparison with experimental data is made.  相似文献   

19.
The stability of steady-state flow is considered in a medium with a nonlocal coupling between pressure and density. The equations for perturbations in such a medium are derived in the linear approximation. The results of numerical integration are given for shear motion. The stability of parallel layered flow in an inviscid homogeneous fluid has been studied for a hundred years. The mathematics for investigating an inviscid instability has been developed, and it has been given a physical interpretation. The first important results in flow stability of an incompressible fluid were obtained in the papers of Helmholtz, Rayleigh, and Kelvin [1] in the last century. Heisenberg [2] worked on this problem in the 1920's, and a series of interesting papers by Tollmien [3] appeared subsequently. Apparently one of the first problems in the stability of a compressible fluid was solved by Landau [4]. The first investigations on the boundary-layer stability of an ideal gas were carried out by Lees and Lin [5], and Dunn and Lin [6]. Mention should be made of a series of papers which have appeared quite recently [7–9]. In all the papers mentioned flow stability is investigated in the framework of classical single-phase hydrodynamics. Meanwhile, in recent years, the processes by which perturbations propagate in media with relaxation have been intensively studied [10–12].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 87–93, May–June, 1976.  相似文献   

20.
The present study is concerned with buoyancy-driven convection experiments in a circular horizontal differentially heated layer of air. The radius-to-height ratio of 14, and Rayleigh numbers of 5,861 and 12,124 have been considered. A Mach–Zehnder interferometer has been used to visualize the convection patterns in the fluid layer. The fluid layer has been imaged at view angles of 0, 45 and 90°. Results obtained show that fringe patterns appropriate for a cavity square in plan are seen in the fluid layer during the early stages of the experiments. After the passage of the initial transients, steady fringes have been observed in the fluid layer for a Rayleigh number of 5,861. At Ra=12,124, a dominant pattern was detectable combined with mild unsteadiness. The steady thermal field at Ra=5,861 displayed symmetry with respect to the viewing angle. A stronger three dimensionality was seen at the higher Rayleigh number. The average steady state Nusselt numbers were found to vary with view angle from 1.91 to 2.04 at Ra=5,861 and 2.28 to 2.43 at Ra = 12,124. The cavity-averaged Nusselt numbers are in good agreement with the available correlations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号