共查询到20条相似文献,搜索用时 15 毫秒
1.
High-pressure resistivity and X-ray diffraction measurements were conducted on La0.85MnO3−δ at ∼6 and ∼7 GPa, respectively. At low pressures the metal-insulator transition temperature (TMI) increases linearly up to a critical pressure, P* ∼3.4 GPa, followed by reduction in TMI at higher pressure. Analysis of the bond distances and bond angles reveals that a bandwidth increase drives the increase in TMI below P*. The reduction in TMI at higher pressures is found to result from Jahn-Teller distortions of the MnO6 octahedra. The role of anharmonic interatomic potentials is discussed. 相似文献
2.
The effects of Nd-doping on the transport and magnetic properties of La2/3−yNdySr1/3MnO3 (y=0, 1/3, 2/3) are studied theoretically by using the generalized-gradient-corrected full-potential method. In order to investigate the coupling between Nd and Mn, the electronic structures of La2/3−yNdySr1/3MnO3 with ferromagnetic (FM) and antiferromagnetic (AFM) arrangements of Nd and Mn sublattices are calculated. The calculation for FM La2/3−yNdySr1/3MnO3 yields a half-metallic band structure, while the ferrimagnetic (FiM) system is found to have a metallic character. Hybridization of Nd 4f, Mn 3d, and O 2p bands around Fermi level (EF) is observed, suggesting the coupling between Nd and Mn is mediated by O 2p carriers. The qualitative features of transport and magnetic properties of such a two-spin system can be interpreted in terms of half-metallic FM domains being mixed up with metallic FiM domains. The proportion of FM domains varying with Nd-doping concentration has strong influences on the magnetoresistance. 相似文献
3.
Following the double metal-insulator peaks found in series of perovskite manganites La0.7−xPrxPb0.3MnO3 (x=0, 0.05, 0.1), the magnetic entropy change of La0.6Pr0.1Pb0.3MnO3 was carefully investigated as a representative. The maximum magnetic entropy change (ΔSH=−1.7 J/kg K at 300 K) and the expanded refrigerant capacity (about 123.8 J/kg) had been obtained under 10 kOe magnetic field variation, though the double peak of maximum magnetic entropy change had not occurred since the comparative faint magnetic signal from the Pr ions inhomogeneity existed in the octahedral frame submerged in the strong magnetic signal originated from the dominating octahedral frame both in the double exchange mechanism, but the width at half maximum in the magnetic entropy change comparatively broadened. 相似文献
4.
The critical properties of perovskite manganite AMn1−xGaxO3 (A=La0.75Ca0.08Sr0.17, x=0, 0.05 and 0.1) at the ferromagnetic–paramagnetic transition have been analyzed. Experimental results revealed that all samples exhibit a second-order magnetic phase transition. The estimated critical exponents derived from the magnetic data using various techniques such as modified Arrott plot, Kouvel–Fisher method, and critical magnetization isotherms M(TC, H). The critical exponent values for the undoped compound were found to match well with those predicted for the three-dimensional Heisenberg model (β=355±0.007, γ=1.326±0.002, δ=4.90±0.01). While on non-magnetic Ga substitution it tends towards mean-field with long-range interaction. The mean-field model might be due to the random dilution of the Mn sublattice by non-magnetic ion Ga3+ and/or the development of the physical size of the clusters which enhance the dipole–dipole interaction. 相似文献
5.
Shujuan Han Jing Li Yongjie Guo Yongzheng Wang Lanling Zhao 《Journal of luminescence》2011,131(2):244-246
A new crystal, BaNd2(MoO4)4, has been grown from the flux melt based on Li2Mo3O10 by a spontaneous nucleation method. The phase structure of the obtained crystals was determined by X-ray powder diffraction. The result shows that the as-grown crystals are well crystallized and indexed in a monoclinic crystal system with space group B2/b. The specific heat of BaNd2(MoO4)4 crystal at 20 °C is 0.485 J/g K. Absorption and fluorescence spectra were also measured at room temperature. There are several strong and broad absorption peaks from 200 to 1200 nm and three emission transition bands located at 890, 1060, and 1334 nm are detected. 相似文献
6.
本文利用溶胶-凝胶法制备了名义成分为La_(2/3)Sr_(1/3)Fe_xMn_(1-x)O_3(x=0.0,0.1,0.2,0.3,0.5)的系列样品,样品先后经过773,873,1073 K热处理,热处理时采用缓慢升温方式,X射线衍射分析表明,该系列样品均为单相钙钛矿结构,空间群为R3c,利用X'Pert HighScore Plus软件计算了样品的晶粒尺寸、晶格常数、晶胞体积及键长、键角,利用物理性能测量系统测量了样品的磁性,发现样品在10K的磁矩随掺杂量的增加而减小,但存在两个明显不同的变化区域:从x=0到x=0.2时,平均每个分子的磁矩从2.72μB迅速下降到0.33μB,居里温度从327 K下降到95 K,下降了232 K;而从x=0.2到x=0.5时,平均每个分子的磁矩从0.33μB缓慢下降到0.05μB,居里温度从95K下降到46K,只下降了49K,我们认为Fe与Mn离子磁矩反平行是样品磁矩随Fe掺杂量增加而下降的原因之一。 相似文献
7.
Bo Kong Lin Zhang Xiang-Rong Chen Ti-Xian Zeng Ling-Cang Cai 《Physica B: Condensed Matter》2012,407(12):2050-2057
The structures, structural relative stabilities, pressure-induced phase transitions, and equations of state for lanthanide trihydrides REH3 (RE=Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu) are systematically studied using ab initio calculations under a core state model (CSM). The obtained ground-state parameters, such as lattice constants and bulk modulus, agree well with the available data. Among the P63/mm, P3?c1, and P63cm structures, the P63cm structure is found to be the most stable structure for lanthanide trihydride via the comparison of the calculated total energies. With the help of Birch–Murnaghan equation of state, the structural transitions from hexagonal to cubic for REH3 (RE=Sm, Gd, Ho, Er, and Lu) under pressure are affirmed; especially, the similar behavior of REH3 (RE= Tb, Dy, and Tm) is reasonably predicted for the first time by this means. For the transitions, the repulsive interactions of H–H atoms may play an important role in terms of the analysis of the structures in the vicinity of the theoretical phase transition. 相似文献
8.
Ali Ekber Irmak Atilla Coskun Selcuk Akturk Yusuf Samancioglu Burak M. Kaynar 《Journal of magnetism and magnetic materials》2010,322(8):945-951
La1−xAgxMnO3 samples were synthesized by standard sol-gel method with Ag concentrations of x=0.05 and 0.25. The samples from each concentration were pressed and sintered at 1000, 1200 and 1400 °C for 24 h in air for a systematic study. They were examined structurally by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) with Energy Dispersive Spectroscopy (EDS) and X-ray Diffraction (XRD) and magnetically by Magnetic Properties Measurements System (MPMS). AFM and SEM analyses show that surface morphology changes with Ag concentration and sintering temperature (TS). It was observed that high temperature sintering leads Ag to leave material as determined from EDS analyses. XRD spectra exhibited that the crystal structure changes with Ag concentration while showing pronounced change with the sintering temperature. From the magnetic measurements, the Curie temperatures (TC) and the isothermal magnetic entropy changes (−ΔSM) were calculated. It was observed that TC increases with Ag concentration and decreases with TS. The maximum −ΔSM was calculated to be 7.2 J/kg K under the field change of 5 T for the sample sintered at 1000 °C with x=0.25. 相似文献
9.
V.C. Fuertes M.C. Blanco D.G. Franco J.M. De Paoli E.V. Pannunzio Miner R.D. Snchez M.T. Fernndez-Díaz R.E. Carbonio 《Physica B: Condensed Matter》2009,404(18):2717-2719
The new double perovskite La3Co2TaO9 has been prepared by a solid-state procedure. The crystal and magnetic structures have been studied from X-ray powder diffraction (XRPD) and neutron powder diffraction (NPD) data. Rietveld refinements were performed in the monoclinic space group P21/n. The structure consists of an ordered array of alternating B′O6 and B″O6 octahedra sharing corners, tilted along the three pseudocubic axes according to the Glazer notation a−b−c+. Rietveld refinements show that at RT the cell parameters are a=5.6005(7) Å, b=5.6931(7) Å, c=7.9429(9) Å and β=89.9539(7)°, and the refined crystallographic formula of this “double perovskite” can be written as La2(Co)2d(Co1/3Ta2/3)2cO6. Magnetization measurements and low-temperature NPD data show that the perovskite is a ferromagnet with TC=72 K. At high T it follows the Curie–Weiss law with an effective magnetic moment of 3.82μB per Co ion which is very close to spin only Co2+ (HS). 相似文献
10.
对于磁性氧化物的磁有序,传统的观点用超交换相互作用(SE)和双交换相互作用(DE)模型进行解释,其出发点都建立在全部氧离子是-2价的基础上.例如,对于LaMnO_3,认为其中的La和Mn都处于+3价,用SE模型解释相邻Mn~(3+)离子间的反铁磁序;当以二价的Sr离子替代一部分La离子后,认为等量的Mn~(3+)离子变为Mn~(4+)离子,用DE模型解释相邻Mn~(3+)和Mn~(4+)离子间的铁磁序.然而,事实上在氧化物中存在一部分负一价氧离子.Cohen[Nature 358 136]利用密度泛函理论计算了BaTiO_3的价电子态密度,结果得到只有Ba离子的化合价与传统观点相同,为+2价;而Ti和0分别为+2.89价和-1.63价,不是传统观点的+4价和-2价,但是与多年来关于氧化物电离度的研究[Rev.Mod.Phys.42 317]和X射线光电子谱(XPS)的研究结果相符合.本文经过不同热处理条件制备了名义成分为La_(0.95)Sr_(0.05)MnO_3的三个样品,通过对样品的XPS分析,发现样品中不存在Mn~(4+)离子,只存在Mn2+和Mn~(3+)离子,平均价态随热处理程序的增加而升高.尽管三个样品有相同的晶体结构,但磁矩明显不同.对于这样的性能,不能用SE和DE模型解释其磁结构.利用本课题组最近在研究尖晶石结构铁氧体磁有序过程中提出的O 2p巡游电子模型解释了这种现象,利用样品在10 K的磁矩估算出的Mn离子平均价态变化趋势与XPS分析结果一致.O 2p巡游电子模型的出发点建立在氧化物中存在一部分负一价氧离子的基础上,这是其与SE和DE模型的根本区别. 相似文献
11.
Eu3+ activated Ca1−xEuxZrO3 (x = 0.01–0.05) phosphor with perovskite structure has been synthesized by sol–gel combustion method. The structure, morphology and optical properties of materials were characterized by X-ray diffraction, scanning electron microscopy and fluorescence spectrometry. The XRD results indicate that crystals of CaZrO3:Eu3+ belongs to orthorhombic perovskite structure. The phosphors can be effectively excited by UV light and the emission spectra results indicate that red luminescence of CaZrO3:Eu3+ due to electric dipole transition 5D0 → 7F2 at 616 nm is dominant. Thus, these prepared phosphors show remarkable luminescent properties which find applications in display devices. 相似文献
12.
Ling Zhang Jifan Hu Peng Song Hongwei Qin Xiangdong Liu Minhua Jiang 《Physica B: Condensed Matter》2005,370(1-4):259-263
La0.68Pb0.32FeO3 ceramic powder with orthogonal perovskite phase was prepared using sol–gel method. The formaldehyde-sensing characteristics for the sample were examined between 40 and 360 °C. The experimental results revealed that the sensor based on the sample La0.68Pb0.32FeO3 shows excellent gas-sensing characteristics to formaldehyde gas and the operating temperature is very low. With increasing concentration of formaldehyde, the resistance of the sensor based on the sample La0.68Pb0.32FeO3 increases. The response and recovery times for the sample to formaldehyde gas are about 25 and 20 s, respectively. 相似文献
13.
A new layered perovskite compound, Ag2La2Ti3O10, was synthesized by an ion-exchange reaction of M2La2Ti3O10 (M = Na,K) with a AgNO3 molten salt. The crystal structure and the ionic conductivity of the ion-exchanged compound were investigated. The ionic conductivities attributed to the interlayer silver ions were observed at high temperatures. The ionic conductivity of Ag2La2Ti3O10 was much higher than that of Na2La2Ti3O10, while the interlayer sodium ions in Na2La2Ti3O10 and silver ions in Ag2La2Ti3O10 have almost the same rock-salt type coordination. The higher conductivity of Ag2La2Ti3O10 is probably due to the higher polarizability of silver ions. 相似文献
14.
The structural stability of the intermetallic compounds R2Co17 and R2Co17T (T=Be, C) is tested by many means including random atom shifts, global deformations and high temperature disturbances under the control of the pair potentials. The structure type and crystal constants of R2Co17 and R2Co17Be are close to experimental results. The addition of Be and C in the interstice of R2Co17 causes a decrease of the cohesive energy, and Be and C only occupies the 9e interstitial site with the Th2Zn17-type structure or the 6h interstitial site with the Th2Ni17-type structure. All the above results indicate that the potentials are valid for studying the structural properties of these kinds of anisotropy materials. 相似文献
15.
Nilotpal Ghosh 《Journal of magnetism and magnetic materials》2011,323(5):405-409
Magnetization and specific heat of Nd0.7Pb0.3MnO3 single crystal are studied at applied magnetic field. Magnetization measurement at 0.3 T shows ferromagnetic phase below 150 K (TC) and below 20 K displays an antiferromagnetic component. The latter appears to be destroyed at 4.8 T. This anomalous increase below 50 K is probably due to reorientation of Nd moments at high magnetic field. Heat capacity has been measured at 0-10 T at low temperature. The data have been fitted to contributions from free electrons (γ), ferromagnetic spin excitations (β3/2), lattice and a Schottky-like anomaly related to the rare-earth magnetism of the Nd ions. Fitting yields that β3/2 term is very small at 6 and 10 T because of introducing paramagnetic component in ferromagnetic phase at applied magnetic field. Peak due to Schottky anomaly is observed to be broadened with application of magnetic field and the magnitude of Schottky gap(ΔSch) also increases accordingly. 相似文献
16.
Weibin Liu Yingtang Zhang Wen Guan William Kinsman Xinqiang Yuan Ziyu Chen 《Physica B: Condensed Matter》2012,407(17):3405-3407
The magnetic properties of the perovskite form of LaMnO3 have been shown strong interest in recent years due to its high potential for use in magnetic devices. In this paper, the magnetic properties of a 30% terbium-doped LaMnO3 (LMTO) perovskite manganite synthesized by a conventional solid-state reaction were investigated. Data on these properties was recorded periodically via SQUID and VSM to reveal it to be best described magnetically as a spin glass system. Thus, the time effect must be taken into consideration in instantaneously determining this material’s spin glass state as well as the overall magnetic properties in the absence of a magnetic field. The results of this paper point to a more in-depth understanding of the change in magnetic properties associated with doped LaMnO3. 相似文献
17.
We present the infrared and Raman study of the optical phonon modes of the defective compounds ZnGa2Se4 and ZnGa2S4. Most of the compounds have been found to crystallize in the thiogallate structure (defect chalcopyrite) with space group where all cations and vacancies are ordered. For some Zinc compounds a partially disordered cationic sublattice with various degrees of cation and vacancy statistical distribution, which lead to the higher symmetry (defect stannite), has been reported. For ZnGa2Se4 we have found three modes of A symmetry, showing Raman activity only. In addition, we have observed each five modes of B and E symmetry, showing infrared as well as Raman activity. The number of modes and their symmetry assignment, based on polarized measurements, clearly indicate space group for the investigated crystals of ZnGa2Se4.Regarding ZnGa2S4 we have found three modes exclusively showing Raman activity (2A⊕1B1), and only eight modes showing infrared as well as Raman activity (3B2⊕5E). The assignment of the modes has been derived by analyzing the spectral positions of the vibrational modes in comparison to a number of compounds. From the number and symmetry assignment of the optical phonon modes we confirm that ZnGa2S4 most likely crystallizes in space group . 相似文献
18.
Two potassium rare-earth polyphosphate single-crystals KLn(PO3)4 (Ln=Ce (1), Eu (2)) have been synthesized by the high-temperature solution reaction and characterized by single-crystal X-ray diffraction. The two isostructural compounds crystallize in the monoclinic system with space group P21, and all cell parameters shrink with the decrease of Ln3+ ion radius. The main structural feature is (PO3)44− wavy chains and infinite tunnels delimited by LnO8 and KO8 polyhedra. The energy band structures, density of states (DOS), and optical response functions for 1 have been calculated with the density functional theory (DFT) method, and the dielectric functions and refractive indices have been discussed. The measurements of the absorption and emission spectra show that 1 exhibits the ultraviolet emissions, and 2 displays the characteristic yellow-red emissions of Eu3+. 相似文献
19.
V. Dyakonov A. ?lawska-Waniewska E. Zubov V. Mikhaylov A. Szytu?a W. Bazela P. Aleshkevich K. Dyakonov H. Szymczak 《Journal of magnetism and magnetic materials》2010,322(20):3072-3079
X-ray powder diffraction, magnetization, transport and magnetic resonance measurements of nanosize La0.7Sr0.3MnO3 (LCMO) manganites have been performed. The nanosize manganites were synthesized with a co-precipitation method at different (600, 700, 800 and 1000 °C) temperatures. The crystal structure of the nanopowders obtained was determined to be perovskite-like with a rhombohedral distortion (the space group R3¯c). The average size of synthesized nanoparticles (from 17 to 88 nm) was estimated using the X-ray diffraction and low temperature adsorption of argon methods. All the nanosize manganites show ferromagnetic-like ordering. Both the Curie temperature and magnetization decrease with reducing the particle size. The decrease of magnetization is due to the disordered surface shell of particles. The disordered surface layer is a source of the surface anisotropy and is responsible for the increase of coercivity. Temperature dependences of the magnetic resonance spectra parameters have allowed obtaining information on dynamics of magnetic properties in the nanoparticle systems. The resistivity was established to become higher by reducing the particles’ size and increases to a great extent in nanoparticles with the smallest average size at low temperatures. The magnetic entropy was shown to be smaller for the small particles. Using the temperature dependence of magnetic entropy the relative cooling power of the nanosize samples studied was evaluated. 相似文献
20.
A new compound, K4(SO4)(HSO4)2(H3AsO4) was synthesized from water solution of KHSO4/K3H(SO4)2/H3AsO4. This compound crystallizes in the triclinic system with space group P1¯ and cell parameters: a=8.9076(2) Å, b=10.1258(2) Å, c=10.6785(3) Å; α=72.5250(14)°, β=66.3990(13)°, γ=65.5159(13)°, V=792.74(3) Å3, Z=2 and ρcal=2.466 g cm−3. The refinement of 3760 observed reflections (I>2σ(I)) leads to R1=0.0394 and wR2=0.0755. The structure is characterized by SO42−, HSO4− and H3AsO4 tetrahedra connected by hydrogen bridge to form two types of dimer (H(16)S(3)O4−?S(1)O42− and H(12)S(2)O4−?H3AsO4). These dimers are interconnected along the [1¯ 1 0] direction by the hydrogen bonds O(3)-H(3)?O(6). They are also linked by the hydrogen bridge assured by the hydrogen atoms H(2), H(3) and H(4) of the H3AsO4 group to build the chain S(1)O4?H3AsO4 which are parallel to the “a” direction. The potassium cations are coordinated by eight oxygen atoms with K-O distance ranging from 2.678(2) to 3.354(2) Å.Crystals of K4(SO4)(HSO4)2(H3AsO4) undergo one endothermic peak at 436 K. This transition detected by differential scanning calorimetry (DSC) is also analyzed by dielectric and conductivity measurements using the impedance spectroscopy techniques. The obtained results show that this transition is protonic by nature. 相似文献