首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
We present a synchrotron X-ray diffraction study of pressure-induced changes in nanocrystalline anatase (with a crystallite size of 30-40 nm) to 35 GPa. The nanoanatase was observed to a pressure above 20 GPa. Direct transformation to the baddeleyite-TiO2 polymorph was seen at 18 GPa. A fit of the pressure versus volume data to a Birch-Murnaghan equation yielded the following parameters: zero-pressure volume, V0=136.15 Å3, bulk modulus, KT=243(3) GPa, and the pressure derivative of bulk modulus, K′=4 (fixed). The bulk modulus value obtained for the nanocrystalline anatase is about 35% larger than that of the macrocrystalline counterpart.  相似文献   

2.
The lattice parameters of silicon nitride carbodiimide Si2CN4 have been measured up to 8 GPa at room temperature using energy-dispersive X-ray powder diffraction with synchrotron radiation. A fit of the experimental p-V data to the Birch-Murnaghan equation of state yields the values of the bulk modulus of 8.8(2) GPa and its first pressure derivative of 3.4(1). The compression is found to be anisotropic, with the b-axis being significantly more compressible than the a-and c-axes.  相似文献   

3.
The results of high-pressure angle dispersive X-ray diffraction measurements up to 34.3 GPa on the double perovskite Ba2MgWO6 are presented. The ambient rock salt phase (SG: Fm-3m) is found to be stable up to the highest pressure of the present measurements. The third order Birch-Murnaghan equation of state when fitted to pressure-volume data, yielded a zero pressure bulk modulus (B0),and its first and second pressure derivatives as 137.0(81) GPa, and 3.9(5) and −0.03 GPa−1, respectively.  相似文献   

4.
The lattice parameters of Al3BC have been measured up to 5 GPa at ambient temperature using energy-dispersive X-ray powder diffraction with synchrotron radiation. A fit to the experimental p-V data using Birch-Murnaghan equation of state gives values of the Al3BC bulk modulus 116(4) GPa and its first pressure derivative 9(2). In the 1.6-4.8 GPa range at temperatures above 1700 K Al3BC undergoes incongruent melting that results in the formation of Al3BC3, AlB2 and liquid aluminum.  相似文献   

5.
The pressure-volume-temperature behavior of osmium was studied at pressures and temperatures up to 15 GPa and 1273 K. In situ measurements were conducted using energy-dispersive synchrotron X-ray diffraction in a T-cup 6-8 high pressure apparatus. A fit of room-temperature data by the third-order Birch-Murnaghan equation-of-state yielded isothermal bulk modulus K0=435(19) GPa and its pressure derivative K0=3.5(0.8) GPa. High-temperature data were analyzed using Birch-Murnaghan equation of state and thermal pressure approach. The temperature derivative of bulk modulus was found to be −0.061(9) GPa K−1. Significant anisotropy of osmium compressibility was observed.  相似文献   

6.
We report the results of a synchrotron based X-ray diffraction study of bct-Fe2B under quasi-hydrostatic conditions from 0 to 50 GPa. Over this pressure range, no phase change or disproportionation has been observed. A weighted fit of the data to the Birch-Murnaghan equation of state yields a value of the bulk modulus, K, of 164±14 GPa and the first pressure derivative of the bulk modulus, K′, of 4.4±0.5. The compression is found to be anisotropic, with the a-axis being more incompressible than the c-axis.  相似文献   

7.
X-ray diffraction and infrared spectroscopy of CaSO4 are conducted to pressures of 28 and 25 GPa, respectively. A reversible phase transition to the monoclinic monazite-structure occurs gradually between 2 and ∼5 GPa with a highly pressure-dependent volume change of ∼6-8%. A second-order fit of the X-ray data to the Birch-Murnaghan equation of state yields a bulk modulus (K) of 151.2 (±21.4) GPa for the high-pressure monoclinic phase. In the high-pressure infrared spectrum, the infrared-active asymmetric stretching and bending vibrations of the sulfate tetrahedra split at the phase transition, in accord with the results of factor group analysis. Additionally, the tetrahedral symmetric stretching vibration, which is weak in the anhydrite phase, becomes strongly resolved at the transition to the monazite structure. The infrared results indicate that the sulfate tetrahedra are more distorted in the monazite-structured phase than in anhydrite. Kinetic calculations indicate that the anhydrite to monazite transformation may generate the phase transition observed near 30 GPa under shock loading in CaSO4. Our results indicate that the anhydrite- and monazite-structured phases may be the only phases that occur under shock loading of CaSO4 to pressures in excess of 100 GPa.  相似文献   

8.
梁桁楠  马春丽  杜菲  崔啟良  邹广田 《中国物理 B》2013,22(1):16103-016103
The effect of external quasi-hydrostatic pressure on the inverse spinel structure of LiCuVO 4 was studied in this paper. High-pressure synchrotron X-ray diffraction and Raman spectroscopy measurements were carried out at room temperature up to 35.7 and 40.3 GPa, respectively. At a pressure of about 20 GPa, both Raman spectra and X-ray diffraction results indicate that LiCuVO4 was transformed into a monoclinic phase, which remained stable up to at least 35.7 GPa. Upon release of pressure, the high-pressure phase returned to the initial phase. The pressure dependence of the volume of low pressure orthorhombic phase and high-pressure monoclinic phase were described by a second-order Birch-Murnaghan equation of state, which yielded bulk modulus values of B 0 = 197(5) and 232(8) GPa, respectively. The results support the empirical suggestion that the oxide spinels have similar bulk modulus around 200 GPa.  相似文献   

9.
We investigated the behavior of the structure of titanium hydride (TiH2), an important compound in hydrogen storage research, at elevated temperatures (0-120 °C) and high pressures (1 bar-34 GPa). Temperature-induced changes of TiH2 as indicated in the alteration of the ambient X-ray demonstrated a cubic to tetragonal phase transition occurring at about 17 °C. The main focus of this study was to identify any pressure-induced structural transformations, including possible phase transitions, in TiH2. Synchrotron X-ray diffraction studies were carried out in situ (diamond anvil cell) in a compression sequence up to 34 GPa and in subsequent decompression to ambient pressure. The pressure evolution of the diffraction patterns revealed a cubic (Fm-3m) to tetragonal (I4/mmm) phase transition at 2.2 GPa. The high-pressure phase persisted up to 34 GPa. After decompression to ambient conditions the observed phase transition was completely reversible. A Birch-Murnaghan fit of the unit cell volume as a function of pressure yielded a zero-pressure bulk modulus K0=146(14) GPa, and its pressure derivative K0=6(1) for the high-pressure tetragonal phase of TiH2.  相似文献   

10.
We report the results of an X-ray diffraction study of CdAl2Se4 and of Raman studies of HgAl2Se4 and ZnAl2Se4 at room temperature, and of CdAl2S4 and CdAl2Se4 at 80 K at high pressure. The ambient pressure phase of CdAl2Se4 is stable up to a pressure of 9.1 GPa above which a phase transition to a disordered rock salt phase is observed. A fit of the volume pressure data to a Birch-Murnaghan type equation of state yields a bulk modulus of 52.1 GPa. The relative volume change at the phase transition at ∼9 GPa is about 10%. The analysis of the Raman data of HgAl2Se4 and ZnAl2Se4 reveals a general trend observed for different defect chalcopyrite materials. The line widths of the Raman peaks change at intermediate pressures between 4 and 6 GPa as an indication of the pressure induced two stage order-disorder transition observed in these materials. In addition, we include results of a low temperature Raman study of CdAl2S4 and CdAl2Se4, which shows a very weak temperature dependence of the Raman-active phonon modes.  相似文献   

11.
Quasi-hydrostatic compression of aluminum carbide, Al4C3 has been studied to 6 GPa at room temperature using energy-dispersive X-ray powder diffraction with synchrotron radiation. A fit of the experimental p-V data to the Birch equation of state yields the values of the bulk modulus, B0, of 130(5) GPa and the first pressure derivative of the bulk modulus, B0, of 4.6(9). The compression is found to be anisotropic, with the a-axis being more compressible than the c-axis.  相似文献   

12.
In situ high-pressure angle dispersive synchrotron X-ray diffraction studies of molybdenum diselenide (MoSe2) were carried out in a diamond-anvil cell to 35.9 GPa. No evidence of a phase transformation was observed in the pressure range. By fitting the pressure-volume data to the third-order Birch-Murnaghan equation of state, the bulk modulus, K0T, was determined to be 45.7±0.3 GPa with its pressure derivative, K0T, being 11.6±0.1. It was found that the c-axis decreased linearly with pressure at a slope of −0.1593 when pressures were lower than 10 GPa. It showed different linear decrease with the slope of a −0.0236 at pressures higher than 10 GPa.  相似文献   

13.
In situ synchrotron X-ray diffraction measurements are carried out on filled skutterudites CeFe4Sb12 and Ce0.8Fe3CoSb12 up to 32 and 20 GPa, respectively, at room temperature. No phase transformation was observed for both samples in the pressure range. Fitting the pressure-volume data (up to 10 GPa) to the third-order Birch-Murnaghan equation of state, the bulk modulus B0 is determined to be 74(4) GPa, with the pressure derivative B0=7(2) for CeFe4Sb12, and B0=71(2) GPa and B0=8(2) for Ce0.8Fe3CoSb12. The bulk moduli of filled skutterudites CeFe4Sb12 and Ce0.8Fe3CoSb12 in our study are smaller than those from previous studies on unfilled skutterudite CoSb3. The P-V curves of the unfilled skutterudite CoSb3 and filled skutterudites CeyFe4−xCoxSb12 showed good agreement, indicating that the Ce filling fraction and the replacement of Fe with Co have little effect on their compression behaviors.  相似文献   

14.
The pressure-volume-temperature (P-V-T) equation of state (EOS), isothermal bulk modulus, and thermal expansivity of CaF2 with cubic fluorite-type structure are investigated using the constant temperature and pressure shell model molecular dynamics (MD) method with effective pair potentials which consist of the Coulomb, dispersion, and repulsion interaction. It was shown that MD simulation is very successful in accurately reproducing the measured volumes of the CaF2 over a wide range of pressures. The simulated P-V data matched X-ray diffraction experimental results up to 9.5 GPa at 300 K. In addition, volume thermal-expansion coefficient and isothermal bulk modulus were also calculated and compared with available experimental data and the latest theoretical results at ambient condition. At extended temperature and pressure ranges, The P-V EOS under different isotherms at selected temperatures, T-V EOS under different isobars at selected pressures, thermal expansivity, and isothermal bulk modulus were predicted up to 1500 K and 10 GPa. The detailed knowledge of thermodynamic behavior and EOS at extreme conditions are of fundamental importance to the understanding of the physical properties of CaF2.  相似文献   

15.
The compressibility of turbostratic boron-substituted graphite (t-BC) was measured up to 12 GPa at room temperature using energy-dispersive X-ray powder diffraction with synchrotron radiation. A fit to the experimental p-V data using Birch-Murnaghan equation of state gives values of the t-BC bulk modulus 23(2) GPa and its pressure derivative 8.0(6). These values point to a higher compressibility of t-BC as compared to turbostratic graphite.  相似文献   

16.
The crystal structure of SmFeAs(O0.93F0.07) has been investigated under high pressure (up to ∼9 GPa) by means of synchrotron powder diffraction analysis followed by Rietveld refinement. The bulk modulus was calculated (K0 = 103 GPa) using a 3rd order Birch–Murnaghan equation of state and resulted in quite good agreement with theoretical calculations reported for LaFeAsO. The linear compressibilities βa and βc are 2.11(4) and 4.56(7) × 10−3 GPa−1, respectively.  相似文献   

17.
We have studied polycrystalline brookite TiO2 using energy-dispersive X-ray diffraction at pressures up to 27.8 GPa and derived an ambient-pressure bulk modulus of 255 GPa using Birch-Murnaghan's equations of state with a fixed value of 4 as its first derivative. The transition from brookite-type to baddeleyite-type was observed to start at 15.8 GPa and finished at 22.8 GPa. Upon decompression, the α-PbO2 structure appeared at 3.5 GPa and the baddeleyite-type structure remained down to 1.6 GPa, the lowest pressure in the present work.  相似文献   

18.
Synchrotron X-ray diffraction was used in conjunction with a diamond anvil cell to investigate the properties of a tungsten diselenide (WSe2) sample to 35.8 GPa at room temperature. By fitting the pressure-volume data to the third-order Birch-Murnaghan equation of state, the bulk modulus, K0T, of WSe2 was determined to be 72±1 GPa with its pressure derivative, , being 4.1±0.1. It was also found that the c-direction of the hexagonal structure is significantly more compressible than the a-direction. No phase transformation was clearly observed in the pressure range of our measurements.  相似文献   

19.
The high-pressure behavior of rhenium disulfide (ReS2) has been investigated to 51.0 GPa by in situ synchrotron X-ray diffraction in a diamond anvil cell at room temperature. The results demonstrate that the ReS2 triclinic phase is stable up to 11.3 GPa, at which pressure the ReS2 transforms to a new high-pressure phase, which is tentatively identified with a hexagonal lattice in space group P6?m2. The high-pressure phase is stable up to the highest pressure in this study (51.0 GPa) and not quenchable upon decompression to ambient pressure. The compressibility of the triclinic phase exhibits anisotropy, meaning that it is more compressive along interlayer directions than intralayer directions, which demonstrates the properties of the weak interlayer van der Waals interactions and the strong intralayer covalent bonds. The largest change in the unit cell angles with increasing pressures is the increase of β, which indicates a rotation of the sulfur atoms around the rhenium atoms during the compression. Fitting the experimental data of the triclinic phase to the third-order Birch-Murnaghan EOS yields a bulk modulus of KOT=23±4 GPa with its pressure derivative KOT′= 29±8, and the second-order yields KOT=49±3 GPa.  相似文献   

20.
We investigate the structural, thermodynamic and electronic properties of Os by plane-wave pseudopotential density functional theory method. The obtained lattice constants, bulk modulus and cell volumes per formula unit are well consistent with the available experimental data. Especially, from our calculated bulk modulus, we conclude that Os is more compressible than diamond. Moreover, the temperature induced phase transition of Os from HCP structure to FCC structure has been obtained. It is found that the transition temperature of Os at zero pressure is 2702 K. However no transition pressure is found in our calculations. The effect of bulk modulus B as well as other thermodynamic properties of Os (including the thermal expansion α and the Grüneisen constant γ) on temperatures have also been studied. Our calculated thermal expansion α=1.510×10−5 K−1 and the Grüneisen constant γ=2.227 for HCP structure at room temperature agree very well with the experimental data. The density of states for HCP structure at 0 K and FCC structure at transition temperature 2702 K are also investigated in our work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号