首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.

We present optical spectroscopic observations of SS 433 during different precessional and orbital phases. Our 2004, 2007 and 2008 data provide us a good chance to study the variability of the Hα line at different orbital phases for nearly the same disk inclination. The data show that the Hα of SS 433 usually had a symmetric profile between orbital phases 0.25–0.75, while an asymmetric structure with a strong red peak was observed for other orbital phases. We suggest that the orbital variability of Hα emission is connected with accretion flow from the donor star to the accretion disk. In addition, we attribute the dramatic increase of Hα emission during our 2007 observational run, which had a time scale of one day, to the emergence of strong jets.

  相似文献   

2.
Neri Merhav 《Physica A》2008,387(22):5662-5674
We demonstrate that there is an intimate relationship between the magnetic properties of Derrida’s random energy model (REM) of spin glasses and the problem of joint source-channel coding in Information Theory. In particular, typical patterns of erroneously decoded messages in the coding problem have “magnetization” properties that are analogous to those of the REM in certain phases, where the non-uniformity of the distribution of the source in the coding problem plays the role of an external magnetic field applied to the REM. We also relate the ensemble performance (random coding exponents) of joint source-channel codes to the free energy of the REM in its different phases.  相似文献   

3.
《中国物理 B》2021,30(6):67304-067304
We investigate the Hall effects of quadratic band crossing(QBC) fermions in a square optical lattice with spin–orbit coupling and orbital Zeeman term. We find that the orbital Zeeman term and shaking play critical roles in the systems,which can drive a topological transition from spin Hall phases to anomalous Hall phase with nonvanishing(spin) Chern numbers. Due to the interplay among the orbital Zeeman term, spin–orbit coupling, and the shaking, the phase diagram of the system exhibits rich phases, which are characterized by Chern number.  相似文献   

4.
We report here high-pressure x-ray diffraction (XRD) studies on tellurium (Te) at room temperature up to 40 GPa in the diamond anvil cell (DAC). The XRD measurements clearly indicate a sequence of pressure-induced phase transitions with increasing pressure. The data obtained in the pressure range 1 bar to 40 GPa fit five different crystalline phases out of Te: hexagonal Te (I) → monoclinic Te(II) → orthorhombic Te (III) → Β-Po-type Te(IV) → body-centered-cubic Te(V) at 4, 6.2, 11 and 27 GPa, respectively. The volume changes across these transitions are 10%, 1.5%, 0.3% and 0.5%, respectively. Self consistent electronic band structure calculations both for ambient and high pressure phases have been carried out using the tight binding linear muffin tin orbital (TB-LMTO) method within the atomic-sphere approximation (ASA). Reported here apart from the energy band calculations are the density of states (DOS), Fermi energy (E f) at various high-pressure phases. Our calculations show that the ambient pressure hexagonal phase has a band gap of 0.42 eV whereas high-pressure phases are found to be metallic. We also found that the pressure induced semiconducting to metallic transition occurs at about 4 GPa which corresponds to the hexagonal phase to monoclinic phase transition. Equation of state and bulk modulus of different high-pressure phases have also been discussed.  相似文献   

5.
Band insulating diamond or metallic mercury differs in a fundamental fashion from materials containing Mott localized electrons. Proliferation of long range orders that compete and sometimes coexist is an important consequence of Mott localization. In this article we focus on how Mott localization creates a rich phase diagram and new physics. A projected nature of the low energy Hilbert space, as opposed to a Fermi gas like Hilbert space, underlies this. Spin, orbital and charge degree of freedom gain independence, but get quantum entangled among themselves and create novel phases. We focus on spin-half single orbital systems. Mott localization encourages entanglement of spin pairs via valence bond formation. We relate valence bond dynamics to emergent gauge fields. Emergent gauge fields in turn nurture and encourage a variety of orders, including topological orders: antiferromagnetism, spin liquids, charge, spin stripes, chiral order and robust superconducting order.  相似文献   

6.
By generalizing the Green’s function approach developed by Beliaev [S.T. Beliaev, Sov. Phys. JETP 7 (1958) 299; S.T. Beliaev, Sov. Phys. JETP 7 (1958) 289], we study effects of quantum fluctuations on the energy spectra of spin-1 spinor Bose–Einstein condensates, in particular, of a 87Rb condensate in the presence of an external magnetic field. We find that due to quantum fluctuations, the effective mass of magnons, which characterizes the quadratic dispersion relation of spin-wave excitations, increases compared with its mean-field value. The enhancement factor turns out to be the same for two distinct quantum phases: the ferromagnetic and polar phases, and it is a function of only the gas parameter. The lifetime of magnons in a spin-1 87Rb spinor condensate is shown to be much longer than that of phonons due to the difference in their dispersion relations. We propose a scheme to measure the effective mass of magnons in a spinor Bose gas by utilizing the effect of magnons’ nonlinear dispersion relation on the time evolution of the distribution of transverse magnetization. This type of measurement can be applied, for example, to precision magnetometry.  相似文献   

7.
The orientation of the order parameter in the A-like and B-like phases of superfluid 3He immersed in uniaxially compressed aerogel is reported. With the use of NMR methods, it is found that the orbital momentum of the A-and B-like phases is oriented along the deformation. In the A-like phase, a relatively narrow NMR line with an anomalously large negative frequency shift is observed. The Leggett frequency in the A-like phase, which shows the same energy gap suppression as in the B-like phase, is measured. The text was submitted by the authors in English.  相似文献   

8.
Leggett’s mode is a collective excitation corresponding to the oscillation of the relative phase of the order parameters in a two band superconductor, with frequency proportional to interband coupling. We report on the existence of modes, similar to Leggett’s mode, in magnetic systems with Jahn–Teller distortion. The minimal Kugel–Khomskii model, which describes simultaneously both the spin and the orbital order, is studied. The dynamical degrees of freedom are spin-ss operators of localized spins and pseudospin-ττ operators, which respond to the orbital degeneracy and satisfy the similar commutation relation with those of the spin operators. In the case of “G-type antiferro” spin and pseudospin order the system possesses two antiferromagnetic magnons with equal spin-wave velocities and two Leggett’s modes with equal gaps proportional to the square root of the spin–pseudospin interaction constant. In the case of “ferro” spin and pseudospin order the system possesses one ferromagnetic magnon and one Leggett’s mode with gap proportional to the spin–pseudospin interaction constant. We conclude that Leggett’s modes, in the spectrum of the magnetic systems with Jahn–Teller distortion, are generic features of these systems.  相似文献   

9.
We present a technique to map an electronic model with local interactions (a generalized multi-orbital Hubbard model) onto an effective model of interacting classical spins, by requiring that the thermodynamic potentials associated to spin rotations in the two systems are equivalent up to second order in the rotation angles, when the electronic system is in a symmetry-broken phase. This allows to determine the parameters of relativistic and non-relativistic magnetic interactions in the effective spin model in terms of equilibrium Green’s functions of the electronic model. The Hamiltonian of the electronic system includes, in addition to the non-relativistic part, relativistic single-particle terms such as the Zeeman coupling to an external magnetic field, spin–orbit coupling, and arbitrary magnetic anisotropies; the orbital degrees of freedom of the electrons are explicitly taken into account. We determine the complete relativistic exchange tensors, accounting for anisotropic exchange, Dzyaloshinskii–Moriya interactions, as well as additional non-diagonal symmetric terms (which may include dipole–dipole interaction). The expressions of all these magnetic interactions are determined in a unified framework, including previously disregarded features such as the vertices of two-particle Green’s functions and non-local self-energies. We do not assume any smallness in spin–orbit coupling, so our treatment is in this sense exact. Finally, we show how to distinguish and address separately the spin, orbital and spin–orbital contributions to magnetism, providing expressions that can be computed within a tight-binding Dynamical Mean Field Theory.  相似文献   

10.
Orbital degrees of freedom shape many of the properties of a wide class of Mott insulating, transition metal oxides with partially filled 3d shells. Here we study orbital ordering transitions in systems where a single electron occupies the e(g) orbital doublet and the spatially highly anisotropic orbital interactions can be captured by an orbital-only model, often called the 120° model. Our analysis of both the classical and quantum limits of this model in an extended parameter space shows that the 120° model is in close proximity to several T=0 phase transitions and various competing ordered phases. We characterize the orbital order of these nearby phases and their associated thermal phase transitions by extensive numerical simulations and perturbative arguments.  相似文献   

11.
We investigate the importance of quantum orbital fluctuations in the orthorhombic and monoclinic phases of the Mott insulators LaVO(3) and YVO(3). First, we construct ab initio material-specific t(2g) Hubbard models. Then, by using dynamical mean-field theory, we calculate the spectral matrix as a function of temperature. Our Hubbard bands and Mott gaps are in very good agreement with spectroscopy. We show that in orthorhombic LaVO(3), quantum orbital fluctuations are strong and that they are suppressed only in the monoclinic 140 K phase. In YVO(3)the suppression happens already at 300 K. We show that Jahn-Teller and GdFeO3-type distortions are both crucial in determining the type of orbital and magnetic order in the low temperature phases.  相似文献   

12.
It is shown that the continuous spectrum of the 6He nucleus immediately above the threshold for its breakup into an alpha particle and two neutrons has some features that are not peculiar to the continuous spectrum of binary systems. This spectrum has an infinite degeneracy multiplicity; hence, there exist an infinite number of decay channels even if we fix the angular momentum and the parity of a channel. In states characterized by a fixed value of the grand orbital, the potential energy of the 6He nucleus decreases with increasing hyperradius in inverse proportion to its cube. This circumstance is reflected in the behavior of the S-matrix elements for 3 → 3 scattering at low above-threshold energies. Because of the effect of the Pauli exclusion principle, the grand orbital generally ceases to be an appropriate quantum number for classifying decay channels, and the resulting conventional situation requires invoking superpositions of states corresponding to different values of the grand orbital. Within the method of three-cluster hyperharmonics and the approximation of an asymptotic potential, we calculate the eigenphases of the scattering matrix and reveal regularities in the behavior of these phases as functions of energy.  相似文献   

13.
A general study of transverse energy flows (TEF) as physically meaningful and informative characteristics of paraxial light beams’ spatial structure is presented. The total TEF can be decomposed into the spin and orbital contributions giving rise to the spin and orbital angular momentums, correspondingly. Definitions and properties of these constituents are discussed in relation with the optical field representation through linear and circular orthogonal polarization bases. With the help of model examples, the results are applied to investigation of TEF singularities in connection with the usual polarization morphology characteristics of paraxial optical fields. An analysis of TEFs near singular points has been carried out; in particular, the behavior of TEF and its partial contributions near polarization singularities (C-points) has demonstrated the special role of a boundary flow in the origin of the spin angular momentum. The analytical and experimental applicability of the introduced concepts are discussed.  相似文献   

14.
Condensed matter systems, when driven far from equilibrium, often exhibit a far more varied set of phases than their equilibrium counterparts. The existence of non-equilibrium analogs of ‘solids’ and ‘liquids’ has been demonstrated earlier in the context of models for driven disordered vortex lattices in superconductors. Here we study the effects of a structural (polymorphic) transition in a driven two-dimensional crystal placed in a quenched random background. Such a polymorphic crystal is shown to exhibit a complex sequence of unusual dynamical phases as the external drive is varied, including some which have no analog in the undriven pure system. We propose that such states should be accessible in experiments.  相似文献   

15.
Cases in which a functional groups form distinct phases are known in material science in general and specifically in polymer and surfactant sciences. To calculate the van der Waals forces associated with such phases there is a need to evaluate the refractive index of those phases. We expand and generalize a method to estimate the refractive index of such ‘functional group phase’ and discuss how to use the refractive indices to calculate the interaction energies associated with such functional group phases and thereby modify the total theoretically calculated van der Waals forces.  相似文献   

16.
We investigate the optical conductivity of iron pnictides in antiferromagnetic state by mean-field calculation in a five-band Hubbard model, focusing on its anisotropic behavior by examining several states calculated with different Hund coupling J, such as the states with a low or high magnetization and with or without a strong orbital ordering. In addition, we investigate the J dependence of the Dirac cone structure, which is crucial for the low energy excitation. In our calculations, a weakly ordered state with no orbital ordering shows the anisotropy of optical conductivity in accord with experiments. We conclude that the low energy part of the optical conductivity is relevant to the Dirac electron structure rather than the orbital ordering.  相似文献   

17.
Competition between crystal field splitting and Hund’s rule coupling in magnetic metal-insulator transitions of half-filled two-orbital Hubbard model is investigated by multi-orbital slave-boson mean field theory. We show that with the increase of Coulomb interaction, the system firstly transits from a paramagnetic (PM) metal to a Néel antiferromagnetic (AFM) Mott insulator, or to a nonmagnetic orbital insulator, depending on the competition of crystal field splitting and the Hund’s rule coupling. The AFM Mott insulating, PM metallic and orbital insulating phases are not, partially and fully orbital polarized, respectively. For a small J H and a finite crystal field, the orbital insulator is robust. These results demonstrate that large crystal field splitting favors the formation of the orbital insulating phase, while large Hund’s rule coupling tends to destroy it, driving the low-spin to high-spin transition.  相似文献   

18.
We investigate the effect of dopant (boron ‘B’–nitrogen ‘N’) position and density on electronic transport properties of a BN co-doped silicon carbide nanotube (SiCNT). The results show an increase in conductance when both BN impurities are far in space from each other. Orbital delocalization and appearance of new electronic states around Fermi level contribute to the current when this spacing is increased. On the other hand, a reduction in SiCNT conductivity was observed when BN dopant density was increased. This is attributed to the electronic states moving away from the Fermi level and orbital localization at higher bias voltages.  相似文献   

19.
Orbital polarization and electronic correlation are two essential aspects in understanding the normal-state and superconducting properties of multi-orbital FeAs-based superconductors. In this paper, we present a systematic study on the orbital polarization of iron pnictides from weak to strong Coulomb correlations within the Kotliar-Ruckenstein slave boson approach. The magnetic phase diagram of the two-orbital model for LaFeAsO clearly shows that a striped antiferromagnetic metallic phase with orbital polarization exists over a wide doping range, in addition to the Slater-type insulator, Mott insulator and paramagnetic phases. A reversal of the orbital polarization occurs in the intermediate correlation regime in the absence of the crystal field splitting; however, a small crystal field splitting considerably enhances the orbital polarization, and stabilizes the xz-type orbital order. We argue that the ferro-orbital polarization is characteristic of a density wave, and leads to a pseudogap-like behavior in the density of states.  相似文献   

20.
俞榕 《物理学报》2015,64(21):217102-217102
大部分铁基超导体的正常态呈现坏金属行为, 这表明体系中存在较强的电子关联效应. 最近的实验与理论研究显示, 铁基超导体中的电子关联具有多轨道的特征. 本文介绍与评论铁基超导体多轨道哈伯德模型中电子关联方面理论研究的最新进展; 着重讨论以隶自旋技术为代表的一系列量子多体计算方法在研究多轨道系统中金属绝缘体相变的应用. 理论计算给出了铁基超导体多轨道哈伯德模型基于电子关联的基态相图. 在对应母体化合物的电子填充数时, 基态存在从金属到绝缘体的莫特转变. 临近莫特转变, 体系呈现坏金属行为; 其电子性质存在较强的轨道选择性. 轨道选择性的强弱与体系中的洪德耦合和轨道的晶体场劈裂密切相关. 对钾铁硒系统, 研究发现其基态相图存在轨道选择莫特相: 其中铁的3d xy轨道已被莫特局域化, 但其他3d轨道电子仍具有巡游性. 这一新相的发现, 对理解以钾铁硒为代表的一大类铁基超导体正常态与超导之间的联系提供了重要线索.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号