首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
SrFe12−x(Sn0.5Zn0.5)xO19 thin films with x=0−5 were synthesized by a sol-gel method on thermally oxidized silicon wafer (Si/SiO2). The site preference and magnetic properties of Zn-Sn substituted strontium ferrite thin films were studied using 57Fe Mössbauer spectroscopy and magnetic measurements. Mössbauer spectra displayed that the Zn-Sn ions preferentially occupy the 2b and 4f2 sites. The preference for these sites is responsible for the anomalous increase in the magnetization at high Zn-Sn substitutions. X-ray diffraction (XRD) patterns and field emission scanning electron microscope (FE-SEM) micrographs demonstrated that single phase c-axis hexagonal ferrite films with rather narrow grain size distribution were obtained. Vibrating sample magnetometer (VSM) was employed to probe magnetic properties of samples. The maximum saturation of magnetization and coercivity at perpendicular direction were 265 emu/g and 6.3 kOe, respectively. It was found that the complex susceptibility has linear variation with static magnetic field.  相似文献   

2.
In this research work, magnetic multi-walled carbon nanotube (MWCNTs) nanocomposites have been created by the assembly of Mg-Co-Zr substituted barium ferrite film onto the surface of MWCNTs. Microwave absorption of the MWCNTs/doped barium ferrite nanocomposites is evidently enhanced compared to that of pure MWCNTs and substituted ferrites. The maximum reflection loss increased significantly with an increase in volume percentage of MWCNTs. Reflection loss evaluations indicated that nanocomposites display a great potential application as thinner and lighter wide-band electromagnetic wave absorbers.  相似文献   

3.
《Current Applied Physics》2014,14(7):909-915
In this work, a comparison of magnetic and microwave properties between Mn–Sn–Ti substituted SrM ferrite and nanocomposite of Mn–Sn–Ti substituted SrM ferrite–20% volume multi-walled carbon nanotube (MWCNT) has been done. Phase characterization and crystal structure of the synthesized nanoparticles were tested by X-ray diffraction (XRD). Field emission scanning electron microscopy (FESEM), Fourier transform infrared spectrometry (FTIR) analysis approved that the SrFe12−x(MnSn0.5Ti0.5)x/2O19 nanoparticles were attached on the external surfaces of the MWCNTs. Mӧssbauer spectroscopy (MS) showed the occupancy by non-magnetic Mn2+–Sn4+–Ti4+ cations into the hexagonal lattice structure. Magnetic properties were evaluated by a vibrating sample magnetometer (VSM). The results also indicated that saturation magnetization and coercivity were decreased with an increase in x content and also MWCNTs addition. Microwave absorption properties were investigated by a vector network analyzer (VNA). It was found that with an addition of 20 volume percentage of MWCNTs, the saturation magnetization coupled with coercivity decrease, but reflection loss (RL) increase broadly. Also it proved that with an increase in the thickness of absorption the frequency band shifts from Ku (12–18 GHz) to X (8–12 GHz) band.  相似文献   

4.
Strontium ferrite particles were firstly prepared by sol-gel method and self-propagating synthesis, and then the polyaniline/strontium ferrite/multiwalled carbon nanotubes composites were synthesized through in situ polymerization approach. Structure, morphology and properties of the composite were characterized by various instruments. XRD analysis shows that the output of PANI increases with the increase of the content of MWCNTs, due to the large surface area of MWCNTs. Because of the coating of PANI, the outer diameter of MWCNTs increases from 10 nm to 20-40 nm. The electrical conductivity of the composites increases with the amount increase of MWCNTs and reaches 7.2196 S/cm in the presence of 2 g MWCNTs. The coercive force of the composites prepared with 2 g MWCNTs is 7457.17 Oe, which is much bigger than that of SrFe12O19 particles 6145.6 Oe, however, both the saturation magnetization and the remanent magnetization of the composite become much smaller than those of SrFe12O19 particles. The electromagnetic properties of the composite are excellent in the frequency range of 2-18 GHz, which mainly depend on the dielectric loss in the range of 2-9 GHz, and mainly on the magnetic loss in the range of 9-18 GHz.  相似文献   

5.
Strontium hexaferrite nanoparticles are prepared by the chemical sol–gel route. Specific saturation magnetization σs and coercive field strength Hc are determined depending on the heat treatment of the gel and iron/strontium ratio in the starting solution. These ultrafine powders with single-domain behavior have specific saturation magnetization σs=74 emu/g and coercive field strength Hc=6.4 kOe. Experimental results show that it is necessary to preheat the gel between 400 and 500°C for several hours . It can prevent the formation of intermediate γ-Fe2O3 and help to obtain ultrafine strontium ferrite single phase with narrow size distribution at a low annealing temperature. Additionally, the magnetic properties of sol–gel derived strontium ferrite with iron substituted by Zn2+, Ti4+ and Ir4+ are discussed. For an amount of substitution 0<x⩽0.6, the (Zn, Ti)x substituted strontium ferrite shows higher values of both coercive field strength and saturation magnetization than the (Zn, Ir)x substituted phase.  相似文献   

6.
Magnetoplumbite-type (M-type) hexagonal strontium ferrite particles were synthesized via sol-gel technique employing ethylene glycol as the gel precursor at two different calcination temperatures (800 and 1000 °C). Structural properties were systematically investigated via X-ray diffraction (XRD), field emission scanning electron microscopy, high resolution transmission electron microscopy (HRTEM), energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), photoluminescence spectrophotometry and superconducting quantum interference device magnetometer. XRD results showed that the sample synthesized at 1000 °C was of single-phase with a space group of P63/mmc and lattice cell parameter values of a=5.882 Å and c=23.048 Å. EDS confirmed the composition of strontium ferrite calcined at 1000 °C being mainly of M-type SrFe12O19 with HRTEM micrographs confirming the ferrites exhibiting M-type long range ordering along the c-axis of the crystal structure. The photoluminescence (PL) property of strontium ferrite was examined at excitation wavelengths of 260 and 270 nm with significant PL emission peaks centered at 350 nm being detected. Strontium ferrite annealed at higher temperature (1000 °C) was found to have grown into larger particle size, having higher content of oxygen vacancies and exhibited 83-85% more intense PL. Both the as-prepared strontium ferrites exhibited significant oxygen vacancies defect structures, which were verified via TGA. Higher calcination temperature turned strontium ferrite into a softer ferrite.  相似文献   

7.
Flake shaped (Ni0.5Zn0.5)Fe2O4/Co nanocomposites were successfully fabricated by co-precipitating of Ni-Zn ferrite on the surface of cobalt nanoflakes. The electromagnetic characteristics of the samples were studied at the frequency of 0.1–14 GHz. The results showed that the cobalt nanoflakes in compacted nanocomposites were well orientated, and the nanocomposites were characterized with low optimal reflection loss (RL) of −33.8 dB at 11.5 GHz and broad RL bandwidth for <−20 dB in the frequency range of 7.6–12.1 GHz. At the same time, the position of the absorptive band can be adjusted by changing the mass ratio of ferrite to cobalt in the nanocomposites. It is proposed that the excellent microwave absorption properties are related to the combination of strong shape anisotropy of cobalt nanoflakes and adjustable dielectric loss.  相似文献   

8.
Magnetic properties of La-Co substituted M-type strontium hexaferrites were studied. The samples were prepared by polymerizable complex method. Crystal structure of samples has been investigated by powder X-ray diffraction (XRD). Single-phase M-type strontium hexaferrites with chemical composition of Sr1.05−xLaxFe12−xCoxO19 (x=0-0.4) were formed by heating at 1173 K for 24 h in air. Magnetic properties were discussed by measurements of M-H curves with vibrating sample magnetometer (VSM). La-Co substituted M-type strontium hexaferrites prepared by polymerizable complex method showed typical magnetic hysteresis of hard ferrite. The coercive force increased significantly by La-Co substitution with polymerizable complex method. Maximum coercive force achieved in this study is 8.0 kOe (640 kA/m). Scanning electron microscopy revealed that the prepared ferrite particles have plate-like shape of diameter range between 20 and 500 nm.  相似文献   

9.
We report the analysis of measurements of the complex magnetic permeability (μr) and dielectric permittivity (εr) spectra of a rubber radar absorbing material (RAM) with various MnZn ferrite volume fractions. The transmission/reflection measurements were carried out in a vector network analyzer. Optimum conditions for the maximum microwave absorption were determined by substituting the complex permeability and permittivity in the impedance matching equation. Both the MnZn ferrite content and the RAM thickness effects on the microwave absorption properties, in the frequency range of 2-18 GHz, were evaluated. The results show that the complex permeability and permittivity spectra of the RAM increase directly with the ferrite volume fraction. Reflection loss calculations by the impedance matching degree (reflection coefficient) show the dependence of this parameter on both thickness and composition of RAM.  相似文献   

10.
Resin-bonded permanent magnets with out-of-plain direction of magnetization and improved magnetic properties for magnetic MEMS actuator have been created. The material investigated consists of magnetically anisotropic strontium ferrite particles embedded into epoxy resin matrix upto a volume loading of 80%. Intrinsic coercivity Hci of 6000 Oe (480 kA/m), residual magnetic flux density Br up to 4000 G (0.4 T) and maximum energy product (BH)max of 3.0 MG Oe (23.6 kJ/m3) have been attained due to magnetic-field-induced alignment of the ferrite particles during curing process.  相似文献   

11.
Multiwalled carbon nanotubes (MWCNTs) and Vulcan carbon (VC) decorated with SnO2 nanoparticles were synthesized using a facile and versatile sonochemical procedure. The as-prepared nanocomposites were characterized by means of transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infra red spectroscopy. It was evidenced that SnO2 nanoparticles were uniformly distributed on both carbon surfaces, tightly decorating the MWCNTs and VC. The electrochemical performance of the nanocomposites was evaluated by cyclic voltammetry and galvanostatic charge/discharge cycling. The as-synthesized SnO2/MWCNTs nanocomposites show a higher capacity than the SnO2/VC nanocomposites. Concretely, the SnO2/MWCNTs electrodes exhibit a specific capacitance of 133.33 F g−1, whereas SnO2/VC electrodes exhibit a specific capacitance of 112.14 F g−1 measured at 0.5 mA cm−2 in 1 M Na2SO4.  相似文献   

12.
Magnetoelectric (ME) nanocomposites containing Ni0.75Co0.25Fe2O4-BiFeO3 phases were prepared by citrate sol-gel process. X-ray diffraction (XRD) analysis showed phase formation of xNi0.75Co0.25Fe2O4-(1−x)BiFeO3 (x=0.1, 0.2, 0.3 and 0.4) composites on heating at 700 °C. Transmission electron microscopy revealed the formation of powders of nano order size and the crystal size was found to vary from 30 to 85 nm. Dispersion in dielectric constant (ε) and dielectric loss (tan δ) in the low-frequency range have been observed. It is seen that nanocomposites exhibit strong magnetic properties and a large ME effect. On increasing Ni0.75Co0.25Fe2O4 contents in the nanocomposites, the saturation magnetization (MS) and coercivity (HC) increased after annealing at 700 °C. The large ME output in the nanocomposites exhibits strong dependence on magnetic bias and magnetic field frequency. The large value of ME output can be attributed to small grain size of ferrite phase of nanocomposite being prepared by citrate precursor process.  相似文献   

13.
SrLaxFe12−xO19 films (x=0-1.0) with large magneto-crystalline anisotropy were synthesized on SiO2 substrate by sol-gel and self-propagating high-temperature synthesis technique. The films were characterized by various experimental techniques including X-ray diffraction analysis, Field Emission Scanning Electron Microscope, Atomic Force Microscopy, Vibrating Sample Magnetometry and vector network analyzer. The results show that La ions completely enter into strontium ferrite lattice without changing the ferrite appearance; its grain size is approximately 40-80 nm, its length is 100 nm; the magnetoplumbite structure is proved through testing a concertina form of the crystal grain; the maximum coercivity is 5986 Oe at x=0.2; La-doped films possess a wider microwave absorption frequency range with better gross loss angle tangent (tan δ>0.1), from 9 to 10.5 GHz at x=0.2, where the maximum value of tan δ reaches 0.2709. The La-doped films reach smaller nanometer size, better magnetic properties and microwave absorption properties with the doping of lanthanum.  相似文献   

14.
Rodlike thermotropic liquid crystalline polyester (TLCP) was synthesized from 4,4′-oxydibenzoyl chloride and resorcinol containing modified multi-walled carbon nanotubes (MWCNTs) by in situ high-temperature solution polymerization. The liquid crystalline properties and thermal stability of the resulted TLCP nanocomposites were characterized by XRD, DSC, TGA, SEM, POM, and optical analysis. The addition of small amount of MWCNTs into TLCP matrix could significantly improve the thermal stability. The mesophase temperature range of nanocomposites were widened and shifted to higher temperatures. This nanocomposite melting phase transition (Tm) value increases maximally to 38.4 °C compared with pure copolymer. Using the Horowits-Metzger kinetic method, the PE/M-0.5 gave the best performance in terms of the thermal stability. This result can be explained that the incorporation of MWCNTs into TLCP caused an interaction between TLCP and MWCNTs through π-π* conjugation.  相似文献   

15.
This paper reports on the contact resistance (Rc) between carbon filler/natural rubber (NR) nanocomposite and gold ball: three varieties of nanocomposites were prepared from carbon black (CB) and two kinds of multi-walled carbon nanotubes (MWCNTs) with different diameter. Rc of MWCNT/NR nanocomposite was remarkably less than that of CB/NR nanocomposites. The relationship between Rc of MWCNT/NR nanocomposites and applied load was expressed in the formula, Rc=C·Pn (P: load, C and n: constant): for the MWCNTs (diameters of 13 nm)/NR and MWCNTs (diameters of 67 nm)/ NR nanocomposites, they were expressed as Rc=1724·P−0.6 and Rc=344·P−0.37, respectively. The former (MWCNT, ϕ13 nm) showed higher Rc than the latter (MWCNT, ϕ67 nm) over whole region of applied load. The mechanical hardness of the former was higher (90 HsA) than that of the latter (82 HsA). Therefore, the smaller contact area between the nanocomposite and gold ball of the former resulted in higher Rc. The apparent specific contact resistivity was calculated from the observed values of Rc and contact area: 130 Ω mm2 and 127 Ω mm2 for the former (MWCNT, ϕ13 nm) and the latter (MWCNT, ϕ67 nm), respectively.  相似文献   

16.
《Composite Interfaces》2013,20(3):251-262
Multi-walled carbon nanotubes (MWCNTs) and titanium dioxide nanocomposites (MWCNTs/TiO2) were fabricated by a simple novel colloidal processing route and tested as a photocatalyst for degradation of methylene blue under UV irradiation. The novel idea behind this work is to make MWCNTs and TiO2 nanoparticle suspensions separately highly oppositely charged and utilize the electrostatic force of attraction between two entities to deposit nanotitania onto MWCNTs surface. Particle charge detector, scanning electron microscopy, transmission electron microscope, energy dispersive X-rays, X-rays diffraction (XRD), and Raman spectroscopy were used to characterize the composite. XRD and Raman spectroscopic analysis showed the crystalline structure of deposited TiO2 over MWCNTs surface structure as anatase phase. It was found that MWCNTs/TiO2 composite structure have much higher photocatalytic activity compared to TiO2 nanoparticles. The composite material developed may find potential applications in the degradation of organic pollutants in aqueous medium under UV irradiation.  相似文献   

17.
《Composite Interfaces》2013,20(8):737-747
Polypyrrole (PPy) was synthesized and doped with 1, 2, 4, and 8?wt.% of functionalized multi-wall carbon nanotubes (MWCNTs) by in situ polymerization. TGA/DTA analysis of nanocomposites revealed an increase in thermal stability by increasing the CNTs wt.%. Measurement of electrical resistivity showed a reduction in the resistivity of the composites at all temperatures. The glass transition temperature (Tg) of the samples was measured using electrical resistivity measurements and showed that by increasing the amount of functionalized MWCNTs in PPy, its Tg was increased. Temperature dependence of resistivity of pressed pure PPy showed that by increasing the pelletization pressure, the Tg increased. Also the hardness of nanocomposites was increased by increasing the MWCNTs wt.%.  相似文献   

18.
CoTb0.03Fe1.97O4 ferrite and poypyrrole (PPy) polymer nano composites were prepared by mixing the nano crystalline ferrite with poypyrrole (PPy) by following the solid state reaction synthesis route. The XRD patterns of CoTb0.03Fe1.97O4 spinel ferrite powders and polymer (PPy) exhibited single phase spinel structure. The amorphous nature of PPy was evidenced by the broad peaks of XRD patterns. The surface morphology unfolded heterogeneous distribution in composites and ferrite. The grains in ferrite were spherical in shape with clear boundaries. The morphology was appreciably altered by the inclusion of ferrite contents. The higher activation energy and resistivity aroused due to blocking of conduction mechanism owing to nanoparticles embedded in the PPy matrix. A downfall in the dielectric loss of the composites is observed as the frequency of the applied field is increased. The incorporation of ferrite contents optimized the magnetic parameters of the composites. The enhanced coercivity (Hc) of these nanocomposites might be beneficial for memory devices.  相似文献   

19.
Functionalized multiwall carbon nanotubes (MWCNT-COOH) were decorated with crystalline cobalt ferrite nanoparticles (CoFe2O4 NPs) by co-precipitation reaction to form MWCNT-COOH/CoFe2O4 hybrid. The hybrid was characterized by X-ray diffraction analysis, transmission electron microscopy (TEM), Fourier transfom infrared spectroscopy and vibrating sample magnetometry. The results confirmed that MWCNTs and CoFe2O4 NPs coexisted in the hybrid. The TEM results showed a thick layer of CoFe2O4 was intimately connected to the surface of MWCNTs. The saturation magnetization value of the hybrid was 11.5 emu/g. There has been a high frequency fluctuation in conductivity, however, above all dc conductivity changes and resulting activation energy is calculated from the Arrhenius plots. It is found to vary with the temperature regions. This can be attributed to the existence of a conventional temperature independent tunneling conduction mechanism, which can be also explained that the metallic conduction is a dominant mechanism around room temperature. The ac conductivity of MWCNT-COOH/CoFe2O4 hybrid might also be a consequence of the predictions of the universal dynamic response and the ‘n’ power exponents could be determined with lower concentration of the addition in the hybrids.  相似文献   

20.
(Ni0.25Cu0.20Zn0.55)LaxFe2−xO4 ferrite with x=0.00, 0.025, 0.050 and 0.075 compositions were synthesized through nitrate–citrate auto-combustion method. Crystalline spinel ferrite phase with about 16–19 nm crystallite size was present in the as-burnt ferrite powder. These powders were calcined, compacted and sintered at 950 °C for 4 h. Initial permeability, magnetic loss and AC resistivity of different compositions were measured in the frequency range from 10 Hz to 10 MHz. Saturation magnetization and hysteresis parameters were measured at room temperature with a maximum magnetic field of 10 kOe. Permeability and AC resistivity were found to increase and magnetic loss decreased with La substitution for Fe, up to x=0.025. Saturation magnetization and coercive field also increases up to that limit. The electromagnetic properties were found best in the ferrite composition of x=0.025, which would be better for more miniaturized multi layer chip inductor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号