共查询到20条相似文献,搜索用时 15 毫秒
1.
The nanostructure of non-oriented electrical steel sheets 总被引:1,自引:0,他引:1
Darja Steiner Petrovic Bostjan Markoli 《Journal of magnetism and magnetic materials》2010,322(20):3041-1544
Nanostructures of two non-oriented electrical steels were investigated in order to elucidate the influence of nanostructure and its components on magnetic properties. The main difference between the two samples was related to the mean grain size and level of core loss. Surprisingly, the sample with coarser ferrite grains exhibited higher core loss. For this reason (HR)TEM imaging was carried out. Precipitation reactions were monitored using differential scanning calorimetry (DSC). Light microscopy, FE-SEM/EDX and EBSD analyses were also performed to analyse the microstructures and crystallographic textures. The results were compared and related to the magnetic properties. It was shown that besides the microstructural components, the nanostructure and nanoprecipitates also have a crucial impact on the magnetic properties. 相似文献
2.
Yuanxiang Zhang Yunbo Xu Haitao LiuChenggang Li Guangming CaoZhenyu Liu Guodong Wang 《Journal of magnetism and magnetic materials》2012
In this work, the evolution of microstructure, texture and magnetic properties of non-oriented 1.3% silicon steel processed using the twin-roll strip casting was investigated, especially under different solidification structures. A number of microstructures about the as-cast strips show that the initial solidification structure of casting a strip can be controlled by the melt superheats. The microstructures with the average grain size of ∼100–400 μm can be obtained in strips when the melt superheats are from 20 to 60 °C. A nearly random, diffuse, homogeneous texture under a low melt superheat, but comparatively developed {100} oriented grains are formed under a high melt superheat through the cast strip thickness. The relatively low core loss and high magnetic induction can be obtained in the cold rolled and annealed sheets when increasing the initial grain size of cast-strip. The textures in annealed sheets with coarse initial grain size are characterized by the relatively strong Goss component and {001} fiber but weak γ-fiber component, which lead to the high permeability. 相似文献
3.
The effect of pulsed magnetic primary annealing on the microstructure and texture of two-stage cold-rolled silicon steel is investigated. Specimens are annealed at 700 °C for 1 h under a 1 T pulsed magnetic field along different directions with respect to the sample coordinate system. Crystallographic orientation and grain size are identified by analyzing electron backscattered diffraction pattern. The effects of magnetic field treatment are related to the magnetic field direction. Based on the anisotropy energy of ferromagnetic material during magnetic annealing, a hypothesis is proposed. All of the experimental results in this work support the proposed model. 相似文献
4.
Effect of nitriding time on secondary recrystallization behaviors and magnetic properties of grain-oriented electrical steel 总被引:3,自引:0,他引:3
Chun-Chih Liao 《Journal of magnetism and magnetic materials》2010,322(4):434-442
The effect on secondary recrystallization behaviors and magnetic properties of grain-oriented electrical steel of nitriding time from 0 to 240 s in the acquired-inhibitor method has been studied. It was found that the volume fraction of nitride precipitates increased with increasing nitriding time. However, the average diameter of the nitride precipitates decreased with increasing nitriding time. Two kinds of nitride precipitates were found to have formed after primary recrystallization annealing. A fine rod-shaped precipitate was found to be Si3N4 and and a coarse, lozenge-shaped precipitate was MnSiN2. Moreover, primary grain size decreased with increasing nitriding time due to retarding of the grain growth by precipitates. After secondary recrystallization annealing, the specimen that was nitrided for 30 s obtained the largest volume fraction of abnormal growth grains and largest area percentage of Goss grains. Conversely, specimens that were nitrided more or less than 30 s demonstrated poor secondary recrystallization and obtained low area percentage of Goss grains. Furthermore, the optimum nitriding time to obtain the best magnetic properties was 30 s. In addition, the optimum nitrogen content was 150 ppm. 相似文献
5.
Columnar grains can lead to detrimental surface ridging and an inhomogeneous microstructure, although their {1 0 0}〈0 v w〉 texture is considered desirable due to their good magnetic properties in non-oriented silicon steel. Based on the hereditary tendency of {1 0 0}〈0 v w〉 texture, the effects of lubrication and heating rate on texture and on final magnetic properties were investigated using a cast slab containing 100% columnar grains. Hot rolling with lubrication, normalization at low heating rate, two-stage cold rolling, and final annealing at 1000 °C helped achieve high performance. As a result, a new non-oriented silicon steel with high magnetic induction (B50=1.82 T) and low core loss (P1.5=2.35 W/kg) was prepared. The possibility of further performance optimization was also discussed. 相似文献
6.
Sara Silva Ferreira de Dafé Sebastião da Costa PaolinelliAndré Barros Cota 《Journal of magnetism and magnetic materials》2011,323(24):3234-3238
The effect of thermomechanical processing on the formation of shear bands and on the magnetic properties of a 3.0 wt% silicon non-oriented steel was investigated by hot rolling samples with different thicknesses at different temperatures, in order to obtain a variation in hot band grain size and cold strain. All the samples were processed in a single-stage cold rolling and finally annealed at 1020 °C. It was found that the increase of the hot band grain size decreases the γ fiber volume fraction and increases the η fiber volume fraction after the final annealing. The increase of the cold strain strongly contributed to this result. A good combination of intense generation of shear bands, and proper crystallographic texture, due to higher nucleation of grains with favorable orientations to magnetization in these bands, can be obtained for the samples hot rolled at 1000 and 1120 °C and submitted to cold strain of 64.3% and 72.2% respectively. However the best combination of B50, W15/60 and μr can be obtained by hot rolling the samples at 1000 °C to the thickness of 1.4 mm, corresponding to 64.3% of cold strain. 相似文献
7.
Haitao Liu Zhenyu LiuGuangming Cao Chenggang LiGuodong Wang 《Journal of magnetism and magnetic materials》2011,323(21):2648-2651
An Fe-3 wt%Si strip with columnar structure and pronounced {0 0 1}〈0 v w〉 texture was produced using a twin-roll strip caster. Then the as-cast strip was cold-rolled and annealed. The microstructure and texture evolution along the processing steps was investigated. It is found that inhomogeneous microstructure is produced in both cold-rolled and final annealed samples due to the large initial grains. The cold rolling texture is dominated by pronounced a-fiber texture and relatively strong γ-fiber texture. The final recrystallization texture is characterized by {0 0 1}〈0 1 0〉, {0 0 1}〈2 1 0〉, {1 1 0}〈0 0 1〉 texture and a slightly shifted {1 1 1}〈1 1 2〉 component. The microstructural inhomogeneity plays an important role in the texture evolution. 相似文献
8.
Yousuke Kurosaki Hisashi Mogi Hiroyasu Fujii Takeshi Kubota Morio Shiozaki 《Journal of magnetism and magnetic materials》2008
In order to reduce energy loss in motors, the use of high-efficiency non-oriented electrical steel sheets and an optimal motor core design are important. It is also crucial to minimize the deterioration of magnetic properties during the motor core manufacturing process. Accordingly, this report evaluates the effects of cutting and clamping methods on the deterioration factors of motor cores. Magnetic properties are largely influenced by both cutting and clamping methods. While it is difficult to avoid cutting and clamping altogether, it is necessary to adopt suitable production conditions and minimize the deterioration involved. 相似文献
9.
A. Chaudhury R. Khatirkar N.N. Viswanathan V. Singal A. Ingle S. Joshi I. Samajdar 《Journal of magnetism and magnetic materials》2007
Commercial supply, from several steel manufacturers, of low-silicon non-grain-oriented electrical steel was monitored over a span of several years. A total of 51 samples were selected—selected from many hundreds on the basis of large differences in magnetic properties, but absence of significant variations in chemistry (other than differences in silicon percentage). The selected samples were analyzed for crystallographic texture and for grain size. 相似文献
10.
The effects of sulfur content and slab reheating temperature on the magnetic properties of four fully processed nonoriented electrical steels have been investigated. Four slabs of nonoriented electrical steels with sulfur content in the range of 0.0006–0.0126 wt% were reheated to 1100, 1200, and 1300 °C, respectively. Then, they were hot rolled and annealed at 700 °C, cold rolled at the same condition and annealed at 820 °C in the salt bath furnace for 1 min to simulate continuous annealing. The ac core loss, dc hysteresis loss, and ac and dc permeability were measured at 15 kG inductions. It was found that the amount of inclusions in the hot-rolled bands increased with increasing slab reheating temperature and increasing sulfur content in steels. After final annealing, grain sizes of cold-rolled steel sheets decreased with increasing sulfur content and increasing slab reheating temperature. The main preferred orientations in the final annealed steel sheets were (0 1 1) 〈1 0 0〉 and (1 1 1) 〈u v w〉 γ fiber texture. Steel sheets containing 0.0032 and 0.0060 wt% sulfur developed a more stronger (0 1 1)〈1 0 0〉 texture than other steel sheets. However, steel sheets containing 0.0126 wt% sulfur had the weakest (1 1 1)〈u v w〉 texture during slab reheating at temperatures higher than 1200 °C. Both ac core loss and dc hysteresis loss increased with increasing slab reheating temperature and increasing sulfur content in steel sheets. Both ac and dc permeability decreased with increasing slab reheating temperature and increasing sulfur content in steel sheets. If sulfur content decreased from 0.0060 to 0.0032 wt%, there were great improvements in ac core loss, dc hysteresis loss, and ac and dc permeability. However, eddy current loss was almost independent of the sulfur content and slab reheating temperature. 相似文献
11.
We have reported that the magnetic power losses per magnetizing cycle change with the magnetization pausing time in a constant rate of magnetization change and some relaxation phenomena exist in the magnetization pausing period. We discuss the influence of the relaxation phenomena on the dynamic magnetic power losses and suggest that the relaxation phenomena seems to be causes of the frequency dependence of the magnetic losses and of the variation of losses that cannot be expressed only by magnetization speed dependence of losses. 相似文献
12.
聚光器聚焦光斑能流密度分布的测量与分析 总被引:2,自引:0,他引:2
采用基于CCD相机和朗伯靶的间接测量方法,对旋转抛物面聚光器焦平面和多个离焦面的能流密度分布进行了测量。研究了系统的标定方法,并对每个面内的光斑特性进行分析。结果表明:通过对各个接收面光斑特性的比较,可以判断聚光器真实焦点的位置;随着接收面离焦量的增大,光斑直径变大,能流密度峰值减小,形状越来越不规则。这项研究为聚光系统的热利用和接收器的设计提供了依据。 相似文献
13.
The effect of magnetic field annealing of magnetron sputtered CoPt alloy films and Co/Pt bilayers on the crystallographic texture of the obtained chemically ordered (L10) CoPt films is presented. In CoPt alloy films the main effect of the magnetic field is to suppress (1 1 1) growth in the early stages of L10 formation whereas the development of (0 0 1) versus (1 0 0) texture is related to chemical ordering strain. A higher degree of (0 0 1) texture is obtained by magnetically annealing Co/Pt bilayers since the initial (1 1 1) texture in the as-sputtered films is avoided and Co-Pt alloying occurs in the presence of the magnetic field. 相似文献
14.
Yanbin Zhang Yi Long Qingchang Qu Rongchang Ye Yongqin Chang 《Journal of magnetism and magnetic materials》2007
This paper presents an important improvement for precise AC magnetic measurement under sinusoidal magnetic flux by using the digital feedback of harmonic compensation. Core loss-testing can be simply carried out with the sinusoidal magnetic flux even at a magnetic induction up to 1.87 T. The principle, circuit diagram, experimental results and its analysis are reported. Also it is found that the hysteresis loss per cycle P is smaller after correcting the magnetic flux waveform than before. 相似文献
15.
Losses in laminated non-oriented steel under the effect of two high harmonic clusters, caused by voltage excitation typical of two-level pulse-with-modulated (PWM) DC-link and space-vector modulated (SVM) matrix converters, were analyzed. The predicting method proposed, which incorporates anisotropy of loss Ka and grain size gs, describes the magnetizing process within the steel by the means of Poisson statistical distribution. Results are then compared to losses determined by Bertotti's model. The two methods confirmed that spreading of sideband harmonics in the kilohertz range can reduce harmonic losses by up to 40% at low power frequencies. 相似文献
16.
L. Ribi-Zelenovi L. Rafailovi M. Spasojevi A. Mari
i 《Physica B: Condensed Matter》2008,403(12):2148-2154
The nanostructured powders of the Ni95.4Mo4.6 and Ni99Mo1 alloys (average crystallite dimensions of 14 and 21 nm) were obtained by the electrochemical deposition from ammonium solutions of nickel and molybdenum salts. The method of differential scanning calorimetry (DSC) and measurement of temperature dependence of the powder's electrical resistivity, magnetic permeability and the thermoelectromotive force were employed to examine structural changes of the powders. The nanocrystalline alloys Ni95.4Mo4.6 and Ni99Mo1 were stable up to about 460 K. The thermal stabilization of the alloys takes place within the temperature interval of 460–570 K. As a result of this process, a decrease in the electrical resistivity and increases in magnetic permeability as well as electron state density in the proximity of the Fermi level are observed. The crystallization temperature depends upon the current density of powder formation. The nanocrystalline alloy Ni95.4Mo4.6 obtained at j=70 mA cm−2 becomes crystallized in the temperature range between 650 and 840 K, while the Ni99Mo1 alloy obtained at j=180 mA cm−2 crystallizes in the 580–950 K temperature interval. The electrical resistivity and magnetic permeability of the nanocrystalline alloy decreased while the alloy's electron state density near the Fermi level increased after the process of crystallization took place. The electrical resistivity decrease recorded during the structural changes was due to an increase in the electron state density in the proximity of the Fermi level, as well as to an increase in the mean free path of the conducting electrons. 相似文献
17.
Pornthep Chivavibul Manabu Enoki Shigeru Konda Yasushi Inada Tamotsu Tomizawa Akira Toda 《Journal of magnetism and magnetic materials》2011,323(3-4):306-310
An important issue in development of electrical steels for core-laminated products is to reduce core loss to improve energy conversion efficiency. This is usually obtained by tailoring the composition, microstructure, and texture of electrical steels themselves. A new technique to reduce core loss in electrical steel has been investigated. This technique involves electroless plating of magnetic thin coating onto the surface of electrical steel. The material system was electroless Ni–Co–P coatings with different thicknesses (1, 5, and 10 μm) deposited onto the surface of commercially available Fe–3% Si electrical steel. Characterization of deposited Ni–Co–P coating was carried out using X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray (EDX) spectrometer. The deposited Ni–Co–P coatings were amorphous and composed of 56–59% Ni, 32–35% Co, and 8–10% P by mass. The effect of coatings on core loss of the electrical steel was determined using single sheet test. A core loss reduction of 4% maximum was achieved with the Ni–Co–P coating of 1 μm thickness at 400 Hz and 0.3 T. 相似文献
18.
For investigating the magnetic abnormality influenced by stress in ferromagnetic materials, static tension tests on a case-hardened steel were carried out. Different loads, which covered tensile elastic loads up to plastic deformation and break, were applied. Meanwhile, the normal component of magnetic flux leakage, Hp(y), was measured by metal magnetic memory testing. The results indicate that Hp(y) values change with the tensile loads and positions. There exists a relationship between k, which is the inclination of the linear amplitude-locus magnetic flux leakage curve, and static tension load. A simple model is derived. Additionally, the mechanism of the magnetic memory effect can be explained by the theory of the interaction between dislocations and domains. The research provides the potential possibility of quantitative inspection for metal magnetic memory testing. 相似文献
19.
Y. Oner O. Kamer Joseph H. Ross Jr. 《Journal of magnetism and magnetic materials》2006,300(2):373-381
We report resistivity and magnetization measurements on an amorphous Ni74Mn24Pt2 thin film in the temperature range of 3–300 K. Two significant features are apparent in both the magnetic susceptibility and electrical resistivity. A low-temperature (low-T) anomaly is observed at about 40 K, where a cusp appears in the resistivity, while a concomitant step-like increase in zero-field-cooled (ZFC) magnetization (M) appears with increasing temperature. The low-T anomaly is attributed to a crossover from a pure re-entrant spin-glass within individual domains to a mixed ferro-spin-glass regime at lower temperatures. By contrast, the high-temperature (high-T) anomaly, signaled by the appearance of hysteresis below 250 K, corresponds to the freezing of transverse spins in individual domains acting independently. Between the low-T and high-T anomalies a small but discernable magnetic hysteresis is observed for warming vs. cooling in the field-cooled (FC) case. This behavior clearly indicates the presence of domain structure in the sample, while the disappearance of this hysteresis at lower temperatures indicates the complete freezing of the spin orientation of these domains. According to these results, we have divided the magnetic state of this sample into three regions: at temperatures above 250 K, the sample behaves like a soft ferromagnet, exhibiting M vs. H loops with very small hysteresis (less than 5 Oe). As the temperature is lowered into the intermediate region (the range 40–250 K), spins become frozen randomly and progressively within the individual domains. These domains behave independently, rather than as a cooperative behavior of the sample. Weak irreversibility sets in, indicating the onset of transverse spin freezing within the domains. At temperatures below 40 K, the M vs. H loops exhibit larger hysteresis, for both the ZFC and FC cases, as in a pure spin-glass. We have also demonstrated giant noise in the resistivity at temperatures just below 250 K. Such noise can originate from fluctuations of the domains near the film surface because of competing effective bulk and surface anisotropy fields. The large observed amplitude may be explained by means of a large ferromagnetic anisotropy in the resistivity due to the large spin–orbit effect seen in NiMn systems. Finally, the low-T peak in the resistivity has been analyzed using Fisher and Langer's expression based on the Friedel Model proposed for critical transitions in transition metals (s–d systems). The fitted results are in satisfactory agreement with the predictions of this model. 相似文献
20.
便捷获取铁磁承载构件应力对维护基础设施安全具有重要意义.其关键在于准确快速地确定随应力变化灵敏度高、线性度好的表征参数.现有电磁检测法一般在时变磁场线圈激励下,逐点分析实验结果来确定合适的表征参数,会带来线圈发热、涡流影响结果的问题,表征磁参数的确立繁琐.为此,本文提出基于表面磁感应强度的铁磁构件应力恒磁表征方法,采用永磁恒定磁化器产生全局衰减局部均匀的空间变化磁场作激励,用正交磁场测量单元拾取构件表面轴向和法向磁感应强度以表征应力.着重阐述基于表面磁感应强度的应力表征原理:根据退磁场理论、磁场强度切向连续性和磁场高斯定理,建立表面轴向和法向磁感应强度关于应力导函数之间的关系方程.最后开展实验验证.结果表明:根据该关系方程可快速准确地确定随应力灵敏度最高的表面磁感应强度,且其随应力变化线性度较好,拟合优度R2大于0.98,可作为应力表征磁参数.本文所提方法可为在线检测铁磁构件应力提供新途径. 相似文献