首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BaTiO3+MgFe2O4 material system was synthesized by hybrid chemical process using chlorides and nitrates of barium, titanium, iron, and magnesium. Magnetic properties of the composite samples measured as a function of annealing conditions indicated soft magnetic behavior. Saturation specific magnetization from 8 21 emu/g was observed for samples annealed at temperature between 950 and 1150 °C. Variation of specific saturation magnetization with respect to annealing temperature was related with the distribution of Fe cations in the tetrahedral and octahedral sites of MgFe2O4. Electrical properties of the samples annealed at different temperatures were measured to analyze the coexistence of ferroelectric phase. Dielectric constant varying from 15 to 200 with respect to frequency was observed for samples annealed from 950 to 1150 °C.  相似文献   

2.
In this work the Mn5Si3 and Mn5SiB2 phases were produced via arc melting and heat treatment at 1000 °C for 50 h under argon. A detailed microstructure characterization indicated the formation of single-phase Mn5Si3 and near single-phase Mn5SiB2 microstructures. The magnetic behavior of the Mn5Si3 phase was investigated and the results are in agreement with previous data from the literature, which indicates the existence of two anti-ferromagnetic structures for temperatures below 98 K. The Mn5SiB2 phase shows a ferromagnetic behavior presenting a saturation magnetization Ms of about 5.35×105 A/m (0.67 T) at room temperature and an estimated Curie temperature between 470 and 490 K. In addition, AC susceptibility data indicates no evidence of any other magnetic ordering in 4-300 K temperature range. The magnetization values are smaller than that calculated using the magnetic moment from previous literature NMR results. This result suggests a probable ferrimagnetic arrangement of the Mn moments.  相似文献   

3.
The crystal and magnetic structures of the composite compound Nd2Co6Fe have been investigated by high-resolution neutron powder diffraction and X-ray powder diffraction. The compound crystallizes in the hexagonal Ce2Ni7-type structure consisting of Nd(Co,Fe)2 and Nd(Co,Fe)5 structural blocks alternately stacked along the c-axis. Multi-pattern Rietveld refinement of neutron diffraction and X-ray diffraction data at room temperature reveal that substitution of Fe for Co occurs exclusively in the Nd(Co,Fe)5 structural blocks. The preferential occupation of the Fe atoms in the structure is discussed based on the mixing enthalpy between Nd and Fe atoms and on the lattice distortions. In agreement with the reported magnetic phase diagram of the Nd2Co7−xFex compounds, magnetic structure models with the moments of all atoms in the ab plane at 300 K and along the c-axis at 450 K provide a satisfactory fitting to the experimental neutron diffraction data. The refinement results show that the atomic moments of (Co,Fe) atoms within the Nd(Co,Fe)5 blocks decrease slightly with temperature, whereas the atomic moments of Nd in the compound and of (Co,Fe) atoms at the interface between the Nd(Co,Fe)2 and Nd(Co,Fe)5 blocks are reduced significantly.  相似文献   

4.
We have fabricated exchange-biased Co/Pt layers ((0.3 nm/1.5 nm)×3) on (0 0 1)-oriented Cr2O3 thin films. The multilayered films showed extremely smooth surfaces and interfaces with root mean square roughness of ≈0.3 nm for 10 μm×10 μm area. The Cr2O3 films display sufficient insulation with a relative low leakage current (1.17×10−2 A/cm2 at 380 MV/m) at room temperature which allowed us to apply electric field as high as 77 MV/m. We find that the sign of the exchange bias and the shape of the hysteresis loops of the out-of-plane magnetized Co/Pt layers can be delicately controlled by adjusting the magnetic field cooling process through the Néel temperature of Cr2O3. No clear evidence of the effect of electric field and the electric field cooling was detected on the exchange bias for fields as high as 77 MV/m. We place the upper bound of the shift in exchange bias field due to electric field cooling to be 5 Oe at 250 K.  相似文献   

5.
NiCuZn ferrites with different contents of CaO-B2O3-SiO2 glasses were synthesized by a conventional ceramic technology and sintered at 1050 °C. It was found that the addition of CaO-B2O3-SiO2 influenced the magnetic and dielectric properties of the ferrites. The saturation magnetization increased at first and reached its maximum with the sample of 2 wt% CaO-B2O3-SiO2, and then decreased. The initial permeability decreased with the content of CaO-B2O3-SiO2 but the cut-off frequency increased. The quality factor decreased first and then increased; the maximum quality factor was obtained in the sample with 3 wt% CaO-B2O3-SiO2. With increasing content of CaO-B2O3-SiO2, the permittivity increased sharply. The possible reasons responsible for these changes are explained.  相似文献   

6.
We describe the structural properties and electrical characteristics of thin thulium oxide (Tm2O3) and thulium titanium oxide (Tm2Ti2O7) as gate dielectrics deposited on silicon substrates through reactive sputtering. The structural and morphological features of these films were explored by X-ray diffraction, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and atomic force microscopy, measurements. It is found that the Tm2Ti2O7 film annealed at 800 °C exhibited a thinner capacitance equivalent thickness of 19.8 Å, a lower interface trap density of 8.37 × 1011 eV−1 cm−2, and a smaller hysteresis voltage of ∼4 mV than the other conditions. We attribute this behavior to the Ti incorporated into the Tm2O3 film improving the interfacial layer and the surface roughness. This film also shows negligible degrees of charge trapping at high electric field stress.  相似文献   

7.
Thermal stability of cathode material in the charged state is an important aspect for the safety of rechargeable batteries. It is well known that layered LixCoO2 decomposes to a mixture of LiCoO2 and Co3O4 at elevated temperatures. However, not many experimental evidences exist on intermediate phases those may form during the decomposition. Using magnetic measurements we show that it is possible to distinguish between the spinels LiCo2O4 and Co3O4 and thereby follow the decomposition of LixCoO2. We characterize the magnetic behavior of thermally aged LixCoO2 (x = 0.98, 0.76, 0.55) with increasing annealing time. Our results reveal the appearance of magnetic ordering in the thermally degraded products. The detailed analysis illustrates that the formation of Co3O4 is preceded by the formation of a meta stable LiCo2O4 phase.  相似文献   

8.
In this article, the structural and electrical characteristics of high-k Tm2Ti2O7 gate dielectrics deposited on Si (1 0 0) by means of reactive cosputtering were reported. The Tm2Ti2O7 dielectrics annealed at 800 °C exhibited excellent electrical properties such as high capacitance value, small density of interface state, almost no hysteresis voltage, and low leakage current. This phenomenon is attributed to a rather well-crystallized Tm2Ti2O7 structure and composition and a smooth surface observed by X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy, respectively. This film also shows almost negligible charge trapping under high constant voltage stress.  相似文献   

9.
We investigated the magnetic and electronic properties of an antiferromagnet and pressure-induced superconductor CePd5Al2 by measuring the magnetization and de Haas-van Alphen effect, together with the electrical resistivity under pressure and magnetic field. Magnetic measurements including the high field magnetization at 1.3 K reveal several magnetic transitions and quite complex magnetic phase diagram of this compound. Electrical resistivity measurements have been performed using diamond anvil cell up to 12 GPa for the magnetic fields and [1 0 0]. The upper critical field in superconductivity is anisotropic between and [1 0 0] in the tetragonal structure, reflecting the quasi-two dimensional electronic state.  相似文献   

10.
We focused on the effects of the inorganic acid HNO3 on the gas-sensing properties of nanometer SnO2 and prepared the powders via a dissolution-pyrolysis method. Furthermore, the powders were characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray spectra (EDS). Several aspects were surveyed, including the calcining temperature, concentration of nitric acid and the working temperature. The results showed that the gas response of 3 wt% HNO3-doped SnO2 powders (calcined at 500 °C) to 10 ppm Cl2 reached 316.5, at the working temperature 175 °C. Compared with pure SnO2, appropriate HNO3 could increase the gas sensitivity to Cl2 gas more significantly.  相似文献   

11.
Alkaline hexafluorostantanate red phosphors Na2SnF6:Mn4+ and Cs2SnF6:Mn4+ are synthesized by chemical reaction in HF/NaMnO4 (CsMnO4)/H2O2/H2O mixed solutions immersed with tin metal. X-ray diffraction patterns suggest that the synthesized phosphors have a tetragonal symmetry with the space group D4h14 (Na2SnF6:Mn4+) and a trigonal symmetry with the space group D3d3 (Cs2SnF6:Mn4+). Photoluminescence (PL) analysis, PL excitation (PLE) spectroscopy, and the Raman scattering techniques are used to investigate the optical properties of the phosphors. The Franck-Condon analysis of the PLE data yields the Mn4+-related optical transitions to occur at ∼2.39 and ∼2.38 eV (4A2g4T2g) and at ∼2.83 and ∼2.76 eV (4A2g4T1g) for Na2SnF6:Mn4+ and Cs2SnF6:Mn4+, respectively. The crystal field parameters (Dq) of the Mn4+ ions in the Na2SnF6 and Cs2SnF6 hosts are determined to be ∼1930 and ∼1920 cm−1, respectively. Temperature-dependent PL measurements are performed from 20 to 440 K in steps of 10 K, and the obtained results are interpreted by taking into account the Bose-Einstein occupation factor. Comprehensive discussion is given on the phosphorescent properties of a family of Mn4+-activated alkaline hexafluoride salts.  相似文献   

12.
Y.J. Guo  X.T. Zu  B.Y. Wang  X.D. Jiang  X.D. Yuan  H.B. Lv  S.Z. Xu 《Optik》2009,120(18):1012-1015
Two-layer ZrO2/SiO2 and SiO2/ZrO2 films were deposited on K9 glass substrates by sol–gel dip coating method. X-ray photoelectron spectroscopy (XPS) technique was used to investigate the diffusion of ZrO2/SiO2 and SiO2/ZrO2 films. To explain the difference of diffusion between ZrO2/SiO2 and SiO2/ZrO2 films, porous ratio and surface morphology of monolayer SiO2 and ZrO2 films were analyzed by using ellipsometry and atomic force microscopy (AFM). We found that for the ZrO2/SiO2 films there was a diffusion layer with a certain thickness and the atomic concentrations of Si and Zr changed rapidly; for the SiO2/ZrO2 films, the atomic concentrations of Si and Zr changed relatively slowly, and the ZrO2 layer had diffused through the entire SiO2 layer. The difference of diffusion between ZrO2/SiO2 and SiO2/ZrO2 films was influenced by the microstructure of SiO2 and ZrO2.  相似文献   

13.
(Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics doped with Li2CO3 and Bi2O3 as sintering aids were manufactured, and their micro structural, dielectric and piezoelectric properties were investigated. All specimens could be well sintered at a low-temperature of 1080 °C. The bulk density of the specimens doped with a small amount of Li2CO3 was enhanced. The dielectric and piezoelectric properties of ceramics were investigated with different amounts of Li2CO3 substitutions. High electrical properties of d33 = 167 pC/N, kp = 0.34, Pr = 40 μC/cm2 and Ec = 38 kV/cm were obtained from the specimen containing 0.1 mol% of Li2CO3 sintered at 1080 °C.  相似文献   

14.
We report the synthesis of three new Yb-based compounds, Yb8Ag18.5Al47.5 (Yb8Cu17Al49-type, tetragonal tI74–I4/mmm), Yb2Pd2Cd (Mo2B2Fe-type, tetragonal tP10-P4/mbm) and Yb1.35Pd2Cd0.65 (MnCu2Al-type, cubic cF16–Fm3¯m). The crystal symmetry of these compounds has been determined and the complete structural characterisation carried out by single crystal and powder diffraction techniques. Two symmetry in-equivalent sites are available for the Yb ions in Yb8Ag18.5Al47.5 and Yb1.35Pd2Cd0.65. The 4f levels of the Yb ions are appreciably hybridised in Yb8Ag18.5Al47.5 and to a lesser extent in Yb2Pd2Cd as inferred from the magnetisation and heat capacity data. Signatures of heavy fermion behaviour are observed in the heat capacity data of Yb2Pd2Cd in which the heat capacity, C/T, increases at low temperatures attaining a value of ≈600 mJ/mol K2 at 1.8 K. The electrical resistivity of Yb2Pd2Cd follows a linear variation with temperature, T, between 1.4 and 5 K, thus indicating a possible non-Fermi liquid behaviour. In contrast, Yb ions are trivalent in Yb1.35Pd2Cd0.65 and order magnetically near 1.4 K.  相似文献   

15.
Magnetic properties of the single-crystalline Lu2Fe17−xMnx compounds, in which x=0, 0.5, and 2, with the Th2Ni17-type crystal structure are reported. The Lu2Fe17−xMnx compounds with x=0 and 0.5 are ferromagnets at low temperatures and antiferromagnets at high temperatures. The compound with x=2 is always a ferromagnet. The easy-plane magnetic anisotropy in the Lu2Fe17−xMnx ferromagnets drastically weakens with increase in Mn content up to x=2. The temperature dependence of the first magnetic anisotropy constant was obtained and compared with the single-ion model prediction.  相似文献   

16.
CoPt-TiO2 nanocomposite films were synthesized by rapid thermal annealing of CoPt/TiO2 multilayers. The effects of annealing temperature, annealing time, Ag addition and TiO2 volume fraction on the microstructures and magnetic properties of the CoPt-TiO2 nanocomposite films were studied. Results showed that the ordering degree of CoPt and coercivity of CoPt-TiO2 nanocomposites increased with annealing temperature. Increasing annealing time and Ag addition were able to increase the ordering degree and coercivity of CoPt. However, complete L10-ordering of CoPt at 550 °C annealing was not realized by increasing annealing time up to 30 min and Ag addition up to 30 vol.%. Increasing TiO2 volume fraction at 700 °C annealing did not lead to the change of ordering of CoPt. However, the grain structure of the films changed slightly when TiO2 volume fraction was larger than 56%. The coercivity of the film decreased slightly with the addition of TiO2.  相似文献   

17.
The influences of an Fe cap layer on the structural and magnetic properties of FePt/Fe bi-layers are investigated. Compared with single FePt alloy films, a thin Fe layer can affect the crystalline orientation and improve the chemical ordering of L10 FePt films. Moreover, the coercivity increases when a thin Fe layer covers the FePt layer.Beyond a critical thickness, however, the Fe cover layer quickens the magnetization reversal of Fe49Pt51/Fe bi-layers by their exchange coupling.  相似文献   

18.
The generalised gradient approximation based on density functional theory is used to study the structural and electronic properties of the endohedral fullerene dimer (N 2 @C 60) 2.Four N atoms sit at the cage centres in the form of two N 2 molecules.The density of states and Mulliken charge analysis explore that the energy levels from-6 to-10 eV are mainly influenced by the N 2 molecules.  相似文献   

19.
Nano-sized NiFe2−xLaxO4 ferrites (x=0.00, 0.01, 0.02, 0.03, 0.04, 0.5, 0.07 and 0.09) were synthesized for the first time by using metal nitrate and egg-white extract in aqueous medium. The ferrites were characterized by DTA-TG, XRD, TEM, FT-IR and VSM techniques. The thermal decomposition behavior revealed that the precursors were completely decomposed at about 420 °C. TEM image shows agglomerated nanoparticles with crystallite sizes agrees well with that estimated by XRD measurement. XRD patterns show a secondary phase of LaFeO3 besides the cubic structure of the La-substituted ferrites. The lattice parameters, X-ray density and crystallite size were found to increase with the increasing La content. The VSM measurement exhibited a ferromagnetic property for all the samples at room temperature. With increasing La, Ms was found to decrease while Hc increased. The decrease in the saturation magnetization is attributed to the paramagnetic properties of lanthanum, which prefer to substitute iron present in the octahedral sites. The increase in the coercivity is due to either the stronger magnetocrystalline anisotropy induced by La substitution or the change in the crystallite size.  相似文献   

20.
Nanocomposite of hard (BaFe12O19)/soft ferrite (Ni0.8Zn0.2Fe2O4) have been prepared by the sol–gel process. The nanocomposite ferrite are formed when the calcining temperature is above 800 °C. It is found that the magnetic properties strongly depend on the presintering treatment and calcining temperature. The “bee waist” type hysteresis loops for samples disappear when the presintering temperature is 400 °C and the calcination temperature reaches 1100 °C owing to the exchange-coupling interaction. The remanence of BaFe12O19/Ni0.8Zn0.2Fe2O4 nanocomposite ferrite with the mass ratio of 5:1 is higher than a single phase ferrite. The specific saturation magnetization, remanence magnetization and coercivity are 63 emu/g, 36 emu/g and 2750 G, respectively. The exchange-coupling interaction in the BaFe12O19/Ni0.8Zn0.2Fe2O4 nanocomposite ferrite is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号