首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural, superconducting and magnetic properties of La2Cu1−xZnxO4+δ (0≤x≤0.1) chemically oxidized by NaClO at room temperature were studied. All the samples before and after oxidation are single phase with orthorhombic structure, as indicated by their powder X-ray diffraction analysis. The iodometric titration results indicate that Zn-substituted La2Cu1−xZnxO4 is more favorable for the insertion of the excess oxygen, as compared to the Zn-free La2CuO4. The Tc suppression rate resulting from Zn substitution in La2Cu1−xZnxO4+δ is −12.4 K/%. The effective magnetic moment induced by the non-magnetic Zn ion is the order of one Bohr magneton, which decreases with increasing the Zn concentrations in the range examined. The latter two results are qualitatively well consistent with those obtained in La2−xSrxCu1−yZnyO4 with the Sr optimal doping. This reveals that the non-magnetic Zn ions play the same role in both of the La2Cu1−xZnxO4+δ with the excess oxygen content of about 0.1 and the La2−xSrxCu1−yZnyO4 with the Sr optimal doping.  相似文献   

2.
Using mean field theory and high-temperature series expansions (HTSEs), extrapolated with the Padé approximants method, the effect of Zn doping on magnetic properties of NiFe2O4 ferrite spinel has been studied. The nearest neighbour super-exchange interactions for intra-site (JAA, JBB) and inter-site (JAB) of the ZnxNi1−xFe2O4 ferrites spinels, in the range 0≤x≤1, have been computed using the probability approach, based on Mössbauer data. The paramagnetic Curie-Weiss temperature θ and the Curie temperature TC are calculated as a function of Zn concentration. The critical exponent γ associated with magnetic susceptibility is calculated. The spin correlation functions intra-plane and inter-plane have been also computed and compared with exchange couplings. The obtained theoretical results are in good agreement with experimental ones obtained by magnetic measurements and Mössbauer spectroscopy.  相似文献   

3.
The substituted nickel ferrite (NiFe2−2xSnxCuxO4, x=0, 0.1, 0.2, 0.3) was prepared by the conventional ceramic method. The effect of substitution of Fe3+ ions by Sn4+ and Cu2+ cations on the structural and magnetic properties of the ferrite was studied by means of 57Fe Mössbauer spectroscopy, alternating gradient force magnetometry (AGFM) and Faraday balance. Whereas undoped NiFe2O4 adopts a fully inverse spinel structure of the type (Fe)[NiFe]O4, Sn4+ and Cu2+ cations tend to occupy octahedral positions in the structure of the substituted ferrite. Based on the results of Mössbauer spectroscopic measurements, the crystal-chemical formula of the substituted ferrite may be written as (Fe)[NiFe1−2xSnxCux]O4, where parentheses and square brackets enclose cations in tetrahedral (A) and octahedral [B] coordination, respectively. The Néel temperature and the saturation magnetization values of the NiFe2−2xSnxCuxO4 samples were found to decrease with increasing degree of substitution (x). The variation of the saturation magnetization with x measured using the AGFM method and that calculated on the basis of the Mössbauer spectroscopic measurements are in qualitative agreement.  相似文献   

4.
We have studied the electronic and magnetic properties of TbFexMn2−xO5 (x=0, 0.125, 0.25) samples using first-principles density functional theory within the generalized gradient approximation (GGA) schemes. The crystal structure of TbMn2O5 is orthorhombic containing Mn4+O6 octahedra and Mn3+O5 pyramids. The structure changes to monoclinic symmetry for the Fe-doping at the Mn sites. Our spin-polarized calculations give an insulating ground state for TbMn2O5 and a metallic ground state for Fe-doped TbMn2O5. Based on the magnetic properties calculations, it is found that the magnetic moment enhances with increase in the Fe-content in TbMn2O5. Most interestingly, the enhanced magnetic moment is due to a substantial reduction of the magnetic moments at the Fe sites.  相似文献   

5.
The electronic structures of Co-based Heusler compounds CoTiAl1−xSix (x=0, 0.25, 0.5, 0.75 and 1) are calculated by first-principles using the full potential linearized augmented plane wave (FP-LAPW) method within GGA and LSDA+U scheme. Particular emphasis was put on the role of the main group elements. In recent years, the GGA calculations of Co2TiAl (x=0) and Co2TiSi (x=1) indicated that they are half-metallic, but the electronic structure of this compound with x=0.25, 0.5 and 0.75 has not been reported yet, neither theoretically nor experimentally. The calculated results reveal that these are half-metallic and exhibit an energy gap in the minority spin state and also show 100% spin polarization. The substitution of Al by Si leads to an increase in the number of valence electrons, with increasing x. Our calculated results clearly show that with the Si doping, the lattice parameter linearly decreases; bulk modulus increases, and the total magnetic moment increases. The calculated energy gap in the minority spin state, using GGA scheme, was smaller than that obtained by using LSDA+U scheme. The outcomes of this research also show that the Co-3d DOS and therefore, the magnetic properties of compounds are dependent on electron concentration of the main group elements and it will affect the degree of p-d orbital occupation.  相似文献   

6.
The microstructure and magnetic properties have been investigated systematically for Sn1−xMnxO2 polycrystalline powder samples with x=0.02-0.08 synthesized by a solid-state reaction method. X-ray diffraction revealed that all samples are pure rutile-type tetragonal phase and the cell parameters a and c decrease monotonously with the increase in Mn content, which indicated that Mn ions substitute into the lattice of SnO2. Magnetic measurements revealed that all samples exhibit room temperature ferromagnetism. Furthermore, magnetic investigations demonstrate that magnetic properties strongly depend on doping content, x. The average magnetic moment per Mn atom decreases with increase in the Mn content, because antiferromagnetic super-exchange interaction takes place within the neighbor Mn3+ ions through O2− ions for the samples with higher Mn doping. Our results indicate that the ferromagnetic property is intrinsic to the SnO2 system and is not a result of any secondary magnetic phase or cluster formation.  相似文献   

7.
We report on the enhanced electromechanical, magnetic and magnetoelectric properties of Bi1−xCaxFe1−xTixO3 solid solutions. The crystal structure of the x≈0.25 compounds are close to the rhombohedral-orthorhombic phase boundary, and the solid solutions are characterized by increased electromechanical properties due to the polarization extension near the polar-nonpolar border. The homogenous weakly ferromagnetic state is established at x>0.15 doping. The chemical doping shifts the magnetic transition close to room temperature, thus enlarging the magnetic susceptibility of the compounds. The solid solutions at the morphotropic phase boundary exhibit a nearly twofold increase in piezoelectric response, whereas the magnetoelectric coupling shows five times enhancement in comparison with the parent bismuth ferrite.  相似文献   

8.
A series of samples ZnxFe3−xO4 have been prepared by the chemical coprecipitation technique and characterized by X-ray diffraction (XRD), vibrating sample magnetometry (VSM) and X-ray photoelectron spectroscopy (XPS). XRD demonstrates all the samples of ZnxFe3−xO4 have a spinel structure same as Fe3O4. The magnetic hysteresis loops of ZnxFe3−xO4 obtained from VSM indicate that the saturation magnetization has a maximum when x is ∼1/3. The chemical states of Fe atoms and Zn atoms in zinc ferrites have been measured using XPS and Auger electron spectroscopy (AES). The Fe 2p core-level XPS spectra and Zn L3M45M45 Auger peaks have been analyzed and the results have been discussed in correlation with the samples’ magnetic properties. These results suggest most of Zn atoms occupy the tetrahedral sites and a small amount of them occupy the octahedral sites.  相似文献   

9.
We have investigated the electronic and magnetic properties of the doped Heusler alloys Co2Cr1−xVxAl(x=0, 0.25, 0.5, 0.75, 1) using first-principles density functional theory within the generalized gradient approximation (GGA) scheme. The calculated results reveal that with increasing V content the lattice parameter slightly increases; both cohesive energy and bulk modulus increase with increasing x. The magnetic moment of the Co(Cr) sites increases with V doping; the total spin moment of these compounds linearly decreases. We also have performed the electronic structure calculations for Co2Cr1−xVxAl with positional disorder of Co-Y(Cr,V)-type and Al-Y(Cr,V)-type. It is found that formation of Al-Y-type disorder in Co2Cr1−xVxAl alloys is more favorable than that of Co-Y-type disorder. Furthermore, we found that Co2Cr1−xVxAl of the L21-type structure have a half-metallic character. And the stability of L21 structure will enhance, however, the Curie temperature decreases as the V concentration increases. The disorder between Cr(V) and Al does not significantly reduce the spin polarization of the alloys Co2Cr1−xVxAl.  相似文献   

10.
First-principles calculations based on density functional theory within the generalized gradient approximation have been performed for the Sn1−xPbxO2 solid solution. The doped formation energies and electronic structures are also analyzed. Results show that the Sn0.9375Pb0.0625O2 solid solution has the highest stability because of its minimum formation energy value of 0.04589 eV at a doping ratio of 0.0625. The SnO2 lattice constants expand in a distorted rutile structure after Pb doping. The band structure and density of states calculations indicate that the band gap of SnO2 narrowed due to the presence of the Pb impurity energy levels in the forbidden band, namely, Pb 6s energy band overlaps with the conductivity band in the F–Q direction. In addition, the number of electrons filled at the bottom of the conduction band increases from 0.13 to 3.96 after doping, resulting in the strengthening of the conductivity of the solid solution after doping of plumbum. The results provide a theoretical basis for the development and application of the Sn1−xPbxO2 solid solution electrode.  相似文献   

11.
The structural, elastic, electronic and optical (x=0) properties of doped Sn1−xBixO2 and Sn1−xTaxO2 (0≤x≤0.75) are studied using the first-principles pseudopotential plane-wave method within the local density approximation. The independent elastic constants Cij and other elastic parameters of these compounds have been calculated for the first time. The mechanical stability of the compounds with different doping concentrations has also been studied. The electronic band structure and density of states are calculated and the effect of doping on these properties is also analyzed. It is seen that the band gap of the undoped compound narrowed with dopant concentration, which disappeared for x=0.26 for Bi doping and 0.36 for Ta doping. The materials thus become conductive oxides through the change in the electronic properties of the compound for x≤0.75, which may be useful for potential application. The calculated optical properties, e.g. dielectric function, refractive index, absorption spectrum, loss-function, reflectivity and conductivity of the undoped SnO2 in two polarization directions are compared with both previous calculations and measurements.  相似文献   

12.
Structure, magnetic and transport properties of polycrystalline Bi0.6−xPrxCa0.4MnO3 (x=0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) have been studied. Systematic substitution of Pr at Bi site induces an interesting interplay between the charge ordering and antiferromagnetism. The charge ordering temperature (TCO) decreases with increasing x. The antiferromagnetic (AFM) ordering temperature (TN) increases sharply at both the extremes but remains nearly constant from x=0.2 to 0.4. At temperatures lower than TN a transition to the glassy state is observed. The nature of this glass like state appears to be controlled by the Pr content, and at lower values of x this is akin to a spin glass, while at higher x it has a characteristic of cluster glass. The Pr doping also leads to enhancement in the magnetic moment. In the present work it has been proposed that the local lattice distortion induced due to size mismatch between the A-site cations and 6s2 character of Bi3+ lone pair electron is responsible for the observed magnetic and electrical properties.  相似文献   

13.
Q.F. Li  X.F. Zhu 《Physics letters. A》2008,372(16):2911-2916
The electronic structures and magnetic properties of double perovskites Sr2Fe1−xCrxReO6 (x=0.0, 0.25, 0.5, 0.75, 1.0) have been studied within the local spin density approximation (LSDA) and LSDA+U schemes. The calculated results reveal that with increasing Cr content the cell volume shrinks 2.61%; the Fe/Cr site magnetic moment decreases while the Re-site moment increases. The total spin magnetic moment linearly decreases with the Cr doping from 3.00μB for x=0.00 down to 1.00μB for x=1.00 per formula unit. The magnetic coupling constants increase with increasing x. The electronic structure calculations indicate that the electronic concentration in the Re spin-down subband slightly increases resulting from the increase of bonding-antibonding interaction between the localised and the delocalised states in spin-down band; the coupling of O-2p and transition-metal-3d is substantially enhanced with the Cr doping. We discuss the origin of the anomalously high TC of Cr-doped Sr2FeReO6 compounds in terms of band hybridization effects.  相似文献   

14.
In this paper, we have investigated Mn-doped SnO2 powder samples prepared by solid-state reaction method. X-ray diffraction showed a single phase polycrystalline rutile structure. The atomic content of Mn ranged from ∼0.8 to 5 at%. Room temperature M-H loops showed a ferromagnetic behavior for all samples. The ferromagnetic Sn0.987Mn0.013O2 showed a coercivity Hc=545 Oe, which is among the highest reported for dilute magnetic semiconductors. The magnetic moment per Mn atom was estimated to be about 2.54 μB of the Sn0.9921Mn0.0079O2 sample. The average magnetic moment per Mn atom sharply decreases with increasing Mn content, while the effective fraction of the Mn ions contributing to the magnetization decreases. The magnetic properties of the Sn1−xMnxO2 are discussed based on the competition between the antiferromagnetic superexchange coupling and the F-center exchange coupling mechanism, in which both oxygen vacancies and magnetic ions are involved.  相似文献   

15.
We have studied structure, magnetic and transport properties of polycrystalline Bi0.6−xEuxCa0.4MnO3 (x=0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) perovskite manganites. Magnetic measurements show that the charge-ordering temperature (TCO) decreases with increasing x up to x=0.4 and then slightly increases with further increasing x up to x=0.6. Further, the antiferromagnetic (AFM) ordering temperature (TN) decreases with increasing x. At T<TN a transition to metamagnetic glass like state is also seen. Eu doping also leads to enhancement in the magnetic moment and a concomitant decrease in resistivity up to x=0.2 and then an increase in resistivity up to x=0.5. We propose that the local lattice distortion induced by the size mismatch between the A-site cations and 6s2 character of Bi3+ lone pair electron are responsible for the observed variation in physical properties.  相似文献   

16.
Nanoscale Cu1−xMnxO powder is prepared by using the combustion synthesis technique with two different fuels. The structural properties of the powder are determined using Rietveld refinement of X-ray diffraction data, high-resolution transmission electron microscopy, and Fourier transform infrared spectroscopy, while its magnetic properties are analyzed by means of hysteresis loop and temperature dependence of magnetization. The results show that (1) the Cu1−xMnxO nanocrystal is of monoclinic CuO structure, with grain size of 10-30 nm varying with the type of fuel, the nitrate/fuel ratio (N/F), and the Mn concentration, the doping of Mn has a little influence on the lattice parameters; (2) when the Mn concentration is higher than 7%, a small amount of impurity phase of CuMn2O4 appears and annihilates the potential cation vacancies; (3) all of the samples with x≥5% exhibit low-temperature ferromagnetism with the Curie temperature of ∼90 K, which increases slightly by raising the Mn concentration; (4) the paramagnetic moment per Mn ion is around 2-4 bohr magneton above the Curie temperature, which decreases with increasing Mn concentration, implying that the nearest Mn ions are antiferromagnetically coupled and the ferromagnetic order could originate from the super-exchange of next nearest Mn ions along the [1 0 1?] direction.  相似文献   

17.
MCu2O3 (M=Ca and Co) system has two-leg spin ladder structure similar to that of the prototype SrCu2O3 system except that the rungs are buckled with an angle of 123° and 105° for CaCu2O3 and CoCu2O3 compounds, respectively. We have synthesized powder samples of (Ca1−xCox)Cu2O3 (x=0.00-1.00) by the solid state reaction method and their structural and magnetic properties have been investigated. All the synthesized compounds crystallize in orthorhombic structure with space group Pmmn. Lattice parameters of (Ca1−xCox)Cu2O3 decrease with the increase in Co content. DC magnetic susceptibility χ(T) results of the end products CaCu2O3 and CoCu2O3 show antiferromagnetic transition (TN) at 27 and 215 K, respectively. Co doping into (Ca1−xCox)Cu2O3 enhances its TN systematically with increasing Co concentration. The χ(T) of CoCu2O3 shows a broad transition with the peak temperature around 215 K and it was found to be field independent up to 90 kOe. The ambiguity concerning the transition was ruled out by recording the temperature dependent X-ray diffraction pattern on CoCu2O3 system, which indicated that there is no structural transition in the investigated temperature range of 115-300 K. Further, specific heat measurement on CoCu2O3 confirms the magnetic phase transition by the appearance of a sharp peak at 215 K.  相似文献   

18.
Polycrystalline Sn1−xMnxO2 (0≤x≤0.05) diluted magnetic semiconductors were prepared by solid-state reaction method and their structural and magnetic properties had been investigated systematically. The three Mn-doped samples (x=0.01, 0.03, 0.05) undergo paramagnetic to ferromagnetic phase transitions upon cooling, but their Curie temperatures are far lower than room temperature. The magnetization cannot be attributed to any identified impurity phase. It is also found that the magnetization increases with increasing Mn doping, while the ratio of the Mn ions contributing to ferromagnetic ordering to the total Mn ions decreases.  相似文献   

19.
A series of powders of M-typed barium hexaferrites doped with Co, Zn and Sn of general formula BaFe12-2xCox/2Znx/2SnxO19 (x=0-2.0) were prepared by the co-precipitation/molten salt method. The structures, particle morphology and magnetic properties of the products were characterized by X-ray powder diffraction, vibrating sample magnetometer and ESEM/EDX. The results show that the crystallinity of the samples decreases with increase in the doping amount x. When x is less than 0.6, it is possible to obtain perfectly crystallized hexagonal BaFe12-2xCox/2Znx/2SnxO19, where the diameters of the particles are around 500 nm. The saturation magnetization of pure barium ferrite BaFe12O19 produced with this method is 71.9 A m2 kg−1 at room temperature and the intrinsic coercivity (Hc) is 367.8 kA m−1. The doped barium hexaferrite powder obtained when x is between 0.3 and 0.4 exhibits high saturation magnetization and a temperature dependence of coercivity close to zero.  相似文献   

20.
We investigate the chemical pressure effect due to P doping in the CeFeAs1−xPxO0.95F0.05(0≤x≤0.4) system. The compound CeFeAsO0.95F0.05 without P doping is on the boundary between antiferromagnet (AFM) and superconductor. The AFM order of Ce3+ local moments causes a significant reentrance behavior in both resistivity and magnetic susceptibility. Upon P doping, Tc increases and reaches a maximum of 21.3 K at x=0.15, and then it is suppressed to lower temperatures. Meanwhile, the AFM order of Ce3+ ions remains nearly the same in the whole doping range (0≤x≤0.4). Our experimental results suggest a competition between superconductivity and Kondo effect in the Ce 1111 system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号