共查询到20条相似文献,搜索用时 15 毫秒
1.
Guoyan Huo Minghui Ren Xiaoqing Wang Hongrui Zhang Pengfei Shi 《Journal of magnetism and magnetic materials》2010,322(5):500-504
The crystal structural, magnetic and electrical transport properties of double perovskite CeKFeMoO6 have been investigated. The crystal structure of the compound is assigned to the monoclinic system with space group P21/n and its lattice parameters are a=0.55345(3) nm, b=0.56068(2) nm, c=0.78390(1) nm, β=89.874(2). The divergence between zero-field-cooling and field-cooling M-T curves demonstrates the anisotropic behavior. The Curie temperature measured from Cp-T curve is about 340 K. Isothermal magnetization curve shows that the saturation and spontaneous magnetization are 1.90 and 1.43 μB/f.u. at 300 K, respectively. The electrical behavior of the sample shows a semiconductor. The electrical transport behavior can be described by variable range hopping model. Large magnetoresistance, −0.88 and −0.18, can be observed under low magnetic field, 0.5 T, at low and room temperature, respectively. 相似文献
2.
The structural, electronic and magnetic properties of the double perovskite Pb2FeReO6 have been studied by using the first-principles projector augmented wave (PAW) potential within the generalized gradient approximation (GGA) as well as taking into account the on-site Coulomb repulsive and exchange coupling interactions (GGA+U). The optimized crystal structure of the Pb2FeReO6 is a body-centered tetragonal (BCT) with a space group of I4/m and the lattice constants of a=b=5.59 Å and c=7.93 Å, consistent with the experimental results. The two axial transition metal and oxygen (TM–O) distances are slightly larger than the four equatorial TM–O distances and shows the existence of the Jahn–Teller structural distortion in FeO6 and ReO6 octahedra. The Fe3+ and Re5+ ions are in the states (3d5, S=5/2) and (5d2, S=1) with magnetic moments 3.929 and −0.831μB respectively and thus antiferromagnetic (AFM) coupling via oxygen between them. The half-metallic (HM) ferromagnetic (FM) nature implies a potential application of this new compound in magnetoelectronic and spintronics devices. 相似文献
3.
C. Venkataraju G. SathishkumarK. Sivakumar 《Journal of magnetism and magnetic materials》2011,323(13):1817-1822
Nanoparticles of Mn0.5Zn0.5−xCdxFe2O4 (x=0.0, 0.1, 0.2 and 0.3) have been synthesized by a chemical co-precipitation method. The lattice constant increases with increasing Cd content. X-ray calculations indicate that there is deviation in the cation distribution in the nanostructured spinel ferrite. The dielectric constant and dielectric loss decrease for the samples with Cd content up to x=0.2. However the dielectric constant rises for x=0.3. This is due to an increase in the hopping process at the octahedral (B sites). The dielectric constant increases with increase in temperature, indicating a thermally activated hopping process. The DC resistivity increases with Cd content up to x=0.2 and decreases for Cd content x=0.3. The maximum magnetization of all the samples decreases with increase in Cd content. 相似文献
4.
C.A. Triana L.T. CorredorD.A. Landínez Téllez J. Roa-Rojas 《Physica B: Condensed Matter》2012,407(16):3150-3154
The crystal structure evolution of the Sr2GdRuO6 complex perovskite at high-temperature has been investigated over a wide temperature range between 298 K≤T≤1273 K. Powder X-ray diffraction measurements at room temperature and Rietveld analysis show that this compounds crystallizes in a monoclinic perovskite-type structure with P21/n (#14) space group and the 1:1 ordered arrangement of Ru5+ and Gd3+ cations over the six-coordinate M sites, with lattice parameters a=5.81032(8) Å, b=5.82341(4) Å, c=8.21939(7) Å, V=278.11(6) Å3 and angle β=90.311(2)o. The high-temperature analysis shows that this material suffers two-phase transitions. At 373 K it adopts a monoclinic perovskite structure with I2/m space group, and lattice parameters a=5.81383(2) Å, b=5.82526(4) Å, c=8.22486(1) Å, V=278.56(2) Å3 and angle β=90.28(2)o. Above of 773 K, it suffers a phase transition from monoclinic I2/m to tetragonal I4/m, with lattice parameters a=5.84779(1) Å, c=8.27261(1) Å, V=282.89(5) Å3 and angle β=90.02(9)o. The high-temperature phase transition from monoclinic I2/m to tetragonal I4/m is characterized by strongly anisotropic displacements of the anions. 相似文献
5.
Room temperature multiferroic electroceramics of Gd doped BiFeO3 monophasic materials have been synthesized adopting a slow step sintering schedule. Incorporation of Gd nucleates the development of orthorhombic grain growth habit without the appearance of any significant impurity phases with respect to original rhombohedral (R3c) phase of un-doped BiFeO3. It is observed that, the materials showed room temperature enhanced electric polarization as well as ferromagnetism when rare earth ions like Gd doping is critically optimized (x=0.15) in the composition formula of Bi1+2xGd2x/2Fe1−2xO3. We believe that magnetic moment of Gd+3 ions in Gd doped BiFeO3 tends to align in the same direction with respect to ferromagnetic component associated with the iron sub lattice. The dielectric constant as well as loss factor shows strong dispersion at lower frequencies and the value of leakage current is greatly suppressed with the increase in concentration of x in the above composition. Addition of excess bismuth and Gd (x=0.1 and 0.15) caused structural transformation as well as compensated bismuth loss during high temperature sintering. Doping of Gd in BiFeO3 also suppresses spiral spin modulation structure, which can change Fe-O-Fe bond angle or spin order resulting in enhanced ferromagnetic property. 相似文献
6.
7.
The detailed orbital-decomposed electronic structures and magnetic properties of the double perovskite Sr2FeReO6 have been studied using the first-principles projector augmented wave (PAW) potential within the generalized gradient approximation (GGA). Both occupied and unoccupied s and three p states of Fe3+ ion are located far away from the Fermi level, while all up-spin states and most down-spin states are completely filled for the s and three p states of Re5+ ion. The octahedral crystal field of the oxygen atoms around transition-metal (TM) sites splits the five-fold degenerate d states of the free TM atoms into triply degenerate t2g states with smaller bonding-antibonding splitting and doubly degenerate eg states with larger bonding-antibonding splitting. The Fe3+ and Re5+ ions are in the states (3d5, S=5/2) and (5d2, S=1) with magnetic moments 3.70 and −0.86μB, respectively and thus antiferromagnetic coupling via oxygen between them. There are no direct interactions between two nearest Fe-Fe or Re-Re pairs, whereas along each Fe-O-Re-O-Fe or Re-O-Fe-O-Re chains, the hybridizations between Fe 3d and 4s, O 2s and 2p, as well as Re 5p, 5d and 6s orbitals are fairly significant. 相似文献
8.
Kuldeep Chand Verma Virender Pratap SinghMast Ram Jyoti ShahR.K. Kotnala 《Journal of magnetism and magnetic materials》2011,323(24):3271-3275
The structural, microstructural and magnetic properties of nanoferrite NiFe2O4 (NF), CoFe2O4 (CF) and MnFe2O4 (MF) thin films have been studied. The coating solution of these ferrite films was prepared by a chemical synthesis route called sol-gel combined metallo-organic decomposition method. The solution was coated on Si substrate by spin coating and annealed at 700 °C for 3 h. X-ray diffraction pattern has been used to analyze the phase structure and lattice parameters. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been used to show the nanostructural behavior of these ferrites. The values of average grain's size from SEM are 44, 60 and 74 nm, and from AFM are 46, 61 and 75 nm, respectively, measured for NF, CF and MF ferrites. At room temperature, the values of saturation magnetization, Ms∼50.60, 33.52 and 5.40 emu/cc, and remanent magnetization, Mr∼14.33, 15.50 and 1.10 emu/cc, respectively, are observed for NF, CF and MF. At low temperature measurements of 10 K, the anisotropy of ferromagnetism is observed in these ferrite films. The superparamagnetic/paramagnetic behavior is also confirmed by χ′(T) curves of AC susceptibility by applying DC magnetizing field of 3 Oe. The temperature dependent magnetization measurements show the magnetic phase transition temperature. 相似文献
9.
10.
Co3O4 nanoparticles have been prepared for the first time via reflux method, as an alternative low-temperature high-yield process, starting from one single precursor. A plausible mechanism is suggested for the synthetic process. XRD, TEM, FTIR and VSM were used for the structural, morphological, spectroscopic, and magnetic characterization of the product respectively. X-ray diffraction line profile fitting showed that average particle size of the sample is 28 nm. Morphology of the synthesized powder was observed to be thin nanosheets with a thickness of 2-3 nm based on SEM and TEM analyses. Magnetic measurements showed a deviation of the Neel temperature from the bulk value which is attributed to the finite size effects. A loop shift with an enhanced coercivity is observed in the field-cooled hysteresis loops. The opening of the hysteresis loop reveals the existence of the spin-glass like surface spins of the Co3O4 nanoparticles. 相似文献
11.
C. Venkataraju G. Sathishkumar K. Sivakumar 《Journal of magnetism and magnetic materials》2010,322(2):230-233
Nano particles of Mn(0.5–x)NixZn0.5Fe2O4 (x=0.0, 0.1, 0.2, 0.3) have been synthesized by chemical co-precipitation method. The lattice constant and distribution of cation in the tetrahedral and octahedral sites have been deduced through X-ray diffraction (XRD) data analysis. The lattice constant (Å) for all Mn/Ni concentration is found to be less than that for the corresponding bulk values. X-ray intensity calculations indicate that there is deviation in the normal cation distribution. Magnetization decreases with increasing Ni concentration except for x=0.3, where it shows increasing trend. This is due to migration of Fe3+ ions from B-site to A-site, which reduces the B–B coupling and there by the spin canting in the B sublattice. The Curie temperature was found to decrease with increase in nickel concentration except for x=0.3, where it shows a rise. Coercivity is very low and is found to be inversely proportional to the grain size. 相似文献
12.
Yingchao Zhang 《Journal of Physics and Chemistry of Solids》2010,71(4):604-7300
NiFe2O4/NiO nanocomposite thin films have been successfully prepared through a facile route using nickel iron layered double hydroxide (NiFe-LDH) as a single-source precursor. This synthetic approach mainly involves the formation of NiFe-LDH film by casting the slurry of NiFe-LDH precursor on the α-Al2O3 substrate, followed by high-temperature calcination. The composition, microstructure and properties of the films were characterized in detail by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX) and vibrating sample magnetometer (VSM). The results indicate that NiFe2O4/NiO composite film was composed of granules with diameter less than 100 nm, and the thickness of the film was in the range 1-2 μm. The magnetization of the film can be tuned by alternating the Ni/Fe molar ratio of LDH precursor. In addition, the method developed should be easily extended to fabricate other MFe2O4/MO composite film systems with specific applications just by an appropriate combination of divalent/trivalent composition in the precursor of LDHs. 相似文献
13.
V.C. Fuertes M.C. Blanco D.G. Franco J.M. De Paoli E.V. Pannunzio Miner R.D. Snchez M.T. Fernndez-Díaz R.E. Carbonio 《Physica B: Condensed Matter》2009,404(18):2717-2719
The new double perovskite La3Co2TaO9 has been prepared by a solid-state procedure. The crystal and magnetic structures have been studied from X-ray powder diffraction (XRPD) and neutron powder diffraction (NPD) data. Rietveld refinements were performed in the monoclinic space group P21/n. The structure consists of an ordered array of alternating B′O6 and B″O6 octahedra sharing corners, tilted along the three pseudocubic axes according to the Glazer notation a−b−c+. Rietveld refinements show that at RT the cell parameters are a=5.6005(7) Å, b=5.6931(7) Å, c=7.9429(9) Å and β=89.9539(7)°, and the refined crystallographic formula of this “double perovskite” can be written as La2(Co)2d(Co1/3Ta2/3)2cO6. Magnetization measurements and low-temperature NPD data show that the perovskite is a ferromagnet with TC=72 K. At high T it follows the Curie–Weiss law with an effective magnetic moment of 3.82μB per Co ion which is very close to spin only Co2+ (HS). 相似文献
14.
Qian Zhang Letong Liu Jiqiong Jiang Jian Wang 《Journal of Physics and Chemistry of Solids》2009,70(7):1080-1082
Triclinic LiVPO4F/C composite materials were prepared from a sucrose-containing precursor by one-step heat treatment. As-prepared composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical measurements. XRD studies showed that Li3PO4 impurity phase appeared in the sample synthesized at 600 °C and pure LiVPO4F samples could be obtained when the sintered temperature was higher than 650 °C. The sample synthesized at 650 °C presents the highest initial discharge capacity of 132 mAh g−1 at 0.2 C rate, and exhibited better cycling stability (124 mAh g−1 at 50th cycle at 0.2 C rate) and better rate capability (100 mAh g−1 at 50th cycle under 1 C rate) in the voltage range 3.0-4.4 V. 相似文献
15.
S. Meenakshi V. Vijayakumar S.N. Achary 《Journal of Physics and Chemistry of Solids》2011,72(6):609-612
The results of high-pressure angle dispersive X-ray diffraction measurements up to 34.3 GPa on the double perovskite Ba2MgWO6 are presented. The ambient rock salt phase (SG: Fm-3m) is found to be stable up to the highest pressure of the present measurements. The third order Birch-Murnaghan equation of state when fitted to pressure-volume data, yielded a zero pressure bulk modulus (B0),and its first and second pressure derivatives as 137.0(81) GPa, and 3.9(5) and −0.03 GPa−1, respectively. 相似文献
16.
The effect of Co, Ni and Zn substitutions for Cu on the phase stability and superconducting properties of (Hg0.7Cr0.3)Sr2CuO4+δ was investigated. X-ray diffraction (XRD) revealed that both Co and Zn are soluble in the (Hg0.7Cr0.3)Sr2CuO4+δ material up to about 5% of the Cu content, whereas the solubility of Ni is extended up to 10%. Electrical resistivity and magnetic susceptibility measurements show that the value of the superconducting critical temperature Tc decreases linearly with the impurity content. The depression of Tc indicates that the suppression of the superconductivity in Co- and Ni-substituted samples is much stronger than that in Zn-substituted ones. The residual resistivity scales linearly with the doping level as expected from the impurity scattering due to disorder. Some possible explanations for the stronger suppression of Tc by the Co and Ni substitution than by Zn substitution are provided. 相似文献
17.
In order to develope and understand the phenomena involved in producing advanced materials, a rare earth double perovskite oxide calcium cerium niobate, Ca2CeNbO6 (CCN) is synthesized for the first time. The x-ray diffraction pattern of CCN at room temperature (300K) shows orthorhombic perovskite structure, with the lattice parameters, a=9.36Å, b=6.61Å and c=5.88Å and α=β=γ= 90°. A scanning electron micrograph shows the formation of grains with average size ∼2μm. Impedance spectroscopy and Fourier transform infrared spectroscopy are applied to investigate the dielectric and optical properties of CCN. The frequency-dependent electrical data are analyzed in the framework of the conductivity and modulus formalisms. The experimental data of real part of dielectric permittivity (ε′) and imaginary part of electric modulus (M″) are fitted with Davidson-Cole equation to explore the idea of dielectric relaxation (conduction) mechanism in CCN. The frequency-dependent conductivity spectra follow a power law. The scaling behaviour of imaginary electric modulus (M″) suggests that the relaxation describes the same mechanism at various temperatures. 相似文献
18.
The substitutional effect of Mo on the magnetic and transport properties of double exchange ferromagnets, La0.5Sr0.5Co1−x MoxO3 (0?x?0.2) has been investigated. Substitution of 10% Mo at the Co-site of La0.5Sr0.5CoO3 decreases the Curie temperature by ∼60 K than that of the parent compound and the long-range ferromagnetic ordering disappears for x?0.2. The Mo-doped samples, however, undergo a transition from the parent metallic state to the insulating state below Tc. The insulating state is found to obey Mott's variable range hopping of conduction. The effect of Mo substitution is attributed to the factors namely, (i) the dilution of magnetic Co sublattice, (ii) the reduction of Co4+/Co3+ ratio resulting in a reduced carrier concentration and (iii) disruption of the intermediate spin structure of Co, namely Co3+: t2g5eg1. 相似文献
19.
Magnetoresistance material Sr2FeMoO6 with double perovskite structure was synthesized by microwave sintering method using SrCO3, Fe2O3 and MoO3 as raw materials, with MnO2 for microwave absorber. The phase structure, magnetic and electrical transport properties were investigated by X-ray powder diffraction (XRD) and vibrating-sample magnetometer. XRD analysis shows that the as-synthesized sample is Sr2FeMoO6 with tetragonal crystal structure and I4/mmm space group. The unit cell parameters are a=0.5587 nm, c=0.7894 nm, volume=0.2464 nm3. The calculated grain size of the sample is 31.62 nm, which is obtained by the Scherrer formula using the diffraction data. Magnetism testing results show that the sample Sr2FeMoO6 is ferromagnetic with the magnetic transition temperature of about 380 K. Under 1.0 T magnetic field, the saturation and spontaneous magnetization of Sr2FeMoO6 is 1.25 μB/f.u. and 1.00 μB/f.u. at room temperature. The magnetoresistance ratio of the sample is 28%. Electrical transport properties testing results indicate that the sample exhibits typical semiconductor behavior. The conductive mechanism of Sr2FeMoO6 is highly dependent on temperature: within the temperature range of 100–300 K, the mechanism is attributed to the small polaron variable-range hopping model; while it is ascribed to the adiabatic small polaron model within the temperature range of 80–100 K. 相似文献
20.
B. Munirathinam M. Krishnaiah M. Manivel Raja 《Journal of Physics and Chemistry of Solids》2010,71(12):1763-1767
Lanthanum based mixed valence manganite system La1−xCax−0.08Sr0.04Ba0.04MnO3 (LCSBMO; x=0.15, 0.24 and 0.33) synthesized through the sol-gel route is systematically investigated in this paper. The electronic transport and magnetic susceptibility properties are analyzed and compared, apart from the study of unit cell structure, microstructure and composition. Second order phase transition is observed in all the samples and significant difference is observed between the insulator to metal transition temperature (TMI) and paramagnetic (PM) to ferromagnetic (FM) transition temperature (TC). In contrast to the insulating FM behaviour usually observed in La1−xCaxMnO3 (LCMO) for x=0.15, a clear insulator to metal transition is observed for LCSBMO for the same percentage of lanthanum. The temperature dependent resistivity of polycrystalline pellets, when obeying the well studied law ρ=ρo+ρ2T2 for T<TMI, is observed to differ significantly in the values of ρo and ρ2, with the electrical conductivity increasing with x. The variable range hopping model has been found to fit resistivity data better than the small polaron model for T>TMI. AC magnetic susceptibility study of the polycrystalline powders of the manganite system shows the highest PM to FM transition of 285 K for x=0.33. 相似文献