共查询到20条相似文献,搜索用时 0 毫秒
1.
Xingyan Xu 《Journal of magnetism and magnetic materials》2009,321(14):2216-2219
Single-phase Zn1−xCoxO (x=0.02, 0.04) powders were synthesized by a simple co-precipitation technique. X-ray diffraction analysis reveals that the Co-doped ZnO crystallizes in a wurtzite structure. The lattice constants of Co-doped ZnO powders decrease slightly when Co is doped into ZnO. Optical absorption spectra show a decrease in the bandgap with increasing Co content and also give an evidence of the presence of Co2+ ions in tetrahedral sites. Raman spectra indicate that Co doping increased the lattice defects and induced another Raman vibration mode around at 538 cm−1, which is an indicator for the incorporation of Co2+ ions into the ZnO host matrix. Magnetic measurement reveals that the Zn1−xCoxO (x=0.02, 0.04) powders clearly exhibit room-temperature ferromagnetic behavior, which makes them potentially useful as building components for spintronics. 相似文献
2.
En-Zuo Liu Jin-Fang Liu Yan He J.Z. Jiang 《Journal of magnetism and magnetic materials》2009,321(20):3507-3510
Through first-principles total-energy calculations, the effect of H-impurity on the magnetic properties of Co-doped ZnO is studied. Instead of an antibonding location, a bond-centered location of Co-O is the most stable location for isolated H in Co-doped ZnO with a strong bond with oxygen which results in the Co neighbor displaced from the host site to form a Co dimer with the other Co. At the most stable position, due to the strong hybridization between the H-impurity states and the Co 3d-t2g minority spin states at the Fermi level in the gap, H-impurity can mediate a strong short-ranged and long-ranged ferromagnetic spin-spin interaction between neighboring Co atoms. Results based on first-principles total-energy calculations show that H-impurity is a very effective agent that can make Co-doped ZnO process high-temperature ferromagnetism. 相似文献
3.
Qingyu Xu Zheng WenLiguo Xu Jinlong GaoDi Wu Kai ShenTeng Qiu Shaolong TangMingxiang Xu 《Physica B: Condensed Matter》2011,406(1):19-23
Pure ZnO films were prepared by pulsed laser deposition on oxidized Si substrates under different oxygen pressure and substrate temperature. Clear room temperature ferromagnetism has been observed in the ZnO film prepared under high vacuum and room temperature. The observation of anomalous Hall effect confirms the intrinsic nature of the ferromagnetism. The photoluminescence and X-ray photoelectron spectroscopy spectra show the high concentration of oxygen vacancies in the ferromagnetic ZnO film. Our results clearly demonstrate the ferromagnetic contribution of the oxygen vacancies mediated by the spin polarized electrons hopping between discrete states in pure ZnO. 相似文献
4.
5.
A study of the magnetic and structural properties of Zn1−xMxO powder (where x=0 or 0.01, and M=Mn, Fe or Co) produced by the proteic sol–gel process was undertaken. The sample crystal structure was analyzed by XRD and magnetic measurements were carried out in a SQUID magnetometer. Of the XRD analysis, all samples had hexagonal wurtzite crystal structure with P63mc space group, and no secondary phase was observed. It is observed of the M(H) measures at 2 K, that the Co- and Mn-doped ZnO displayed saturation magnetizations (Ms) of approximately 2 and 3.2 emu/g, respectively, and no remanence (Mr) was observed, indicating a superparamagnetic behavior in these samples. However, the Fe-doped sample showed a ferromagnetic behavior with Ms∼0.34 emu/g, Mr∼0.05 emu/g, and coercivity (Hc)∼1090 Oe. Already at room temperature, the M(H) measurements reveal a purely paramagnetic behavior for Mn- and Fe-doped ZnO, indicating that the Curie temperature (Tc) is below 300 K. However, a weak superparamagnetic behavior was observed in the Co-doped sample, indicating that Tc>300 K. 相似文献
6.
Two kinds of Zn0.97Co0.03O powders were prepared by precursor thermal decomposition under different conditions. One grown at low temperature has a positive Curie-Weiss temperature Θ, while the other grown at high temperature has a negative Θ. Both of them contain oxygen vacancies. There are more shallow donors in the former than those in the latter. It is proposed that coexistence of oxygen vacancies and shallow donors is necessary to induce ferromagnetic coupling between Co ions. 相似文献
7.
钴掺杂氧化锌是室温稀磁半导体的重要候选材料,其磁学特性和钴掺杂浓度、显微结构及光学性质密切相关。磁控溅射具有成本低、易于大面积沉积高质量薄膜等特点,是广受关注的稀磁半导体薄膜制备方法。利用磁控溅射方法制备了不同浓度的钴掺杂氧化锌薄膜,并对其显微结构、光学性质和磁学特性进行了系统分析。结果表明:当掺杂原子分数在8%以内时,钴掺杂氧化锌薄膜保持单一的铅锌矿晶体结构,钴元素完全溶解在氧化锌晶格之中;薄膜在可见光区域有很高的透射率,但在567, 615和659 nm处有明显吸收峰,这些吸收峰源于Co2+处于O2-形成的四面体晶体场中的特征d-d跃迁。磁学特性测试结果表明钴掺杂氧化锌薄膜具有室温铁磁性,且钴的掺杂浓度对薄膜的磁学特性有重要影响。结合薄膜结构、光学和电学性质分析,实验中观察到的室温铁磁性应源于钴掺杂氧化锌薄膜的本征属性,其铁磁耦合机理可由束缚磁极化子模型进行解释。 相似文献
8.
Mariana Ungureanu Heidemarie Schmidt Qingyu Xu Holger von Wenckstern Daniel Spemann Holger Hochmuth Michael Lorenz Marius Grundmann 《Superlattices and Microstructures》2007,42(1-6):231
Due to the small magnetic moments observed for 3d transition metals in ZnO [M. Diaconu, H. Schmidt, H. Hochmuth, M. Lorenz, G. Benndorf, J. Lenzner, D. Spemann, A. Setzer, K.W. Nielsen, P. Esquinazi, M. Grundmann, Thin Solid Films 486 (2005) 117], there is still space for optimizing ZnO-based diluted magnetic semiconductors for spintronics applications. Motivated by the observation of magnetic moments as high as 4000μB/Gd atom in GaN:Gd [S. Dhar, O. Brandt, M. Ramsteiner, V.F. Sapega, K.H. Ploog, Phys. Rev. Lett. 96 (2005) 037205], we investigated ZnO films doped with 0.01, 0.1 or 1 at.% rare earth (RE) metals. The films, with thicknesses between 20 nm and 1 μm, have been grown by pulsed laser deposition on a-plane sapphire or fused silica substrates.The homogenous incorporation of the RE ions in ZnO was investigated by combined Rutherford backscattering and particle induced X-ray emission measurements. Hall measurements revealed an unexpected dependence of the electron concentration on film thickness, proving a non-uniform distribution of electrically active defects. Magnetotransport measurements at different temperatures were performed to study the magnetoresistance and the presence of the anomalous Hall effect. Large negative magnetoresistance was obtained at 5 K, while no anomalous Hall effect was observed. These results indicate that there are no exchange interactions between the RE ions. 相似文献
9.
采用分子束外延技术分别在不同晶面的蓝宝石(sapphire Al2O3)基片上制备了沿c轴生长的Zn0.96Co0.04O稀磁半导体薄膜.发现在Al2O3(1120)晶面(a面)上薄膜是二维层状外延生长的高质量单晶薄膜,而在Al2O3(0001)晶面(c面)上薄膜却具有有趣的孪晶结构,部分区域相互之间有一个30°的面内转动来减少和基片之间的失配度.在孪晶薄膜中存在的这些相互旋转形成的区域界面上会引起载流子强烈的散射作用,导致载流子迁移率的下降和平均自由程的缩短.利用X射线吸收精细结构技术证明了无论单晶还是孪晶的Zn0.96Co0.04O薄膜中所有的Co都以+2价替代进入了ZnO的晶格,而没有形成任何杂相.而对其磁性研究发现,孪晶的薄膜样品比高质量的单晶薄膜样品具有大得多的饱和磁矩.这充分说明孪晶薄膜中的铁磁性来源与缺陷有关.我们还对铁磁性耦合机制进行了探讨.
关键词:
Co掺杂ZnO
稀磁半导体
X射线吸收精细结构
单晶和孪晶薄膜 相似文献
10.
从实验和理论上阐述了氧空位对Co掺杂ZnO半导体磁性能的影响.采用磁控溅射法在不同的氧分压下制备了Zn095Co005O薄膜,研究了氧分压对薄膜磁性能的影响.实验结果表明,高真空条件下制备的Zn095Co005O薄膜具有室温铁磁性,提高氧分压后制备的薄膜铁磁性逐渐消失.第一性原理计算表明,在Co掺杂ZnO体系中引入氧空位有利于降低铁磁态的能量,铁磁态的稳定性与氧空位和Co之间的距离密切相关.
关键词:
Co掺杂ZnO
稀磁半导体
第一性原理计算
氧空位缺陷 相似文献
11.
The influence of oxygen vacancy on the magnetism of Co-doped ZnO has been investigated by the first-principles calculations.It is suggested that oxygen vacancy and its location play crucial roles on the magnetic properties of Co-doped ZnO.The exchange coupling mechanism should account for the magnetism in Co-doped ZnO with oxygen vacancy and the oxygen vacancy is likely to be close to the Co atom.The oxygen vacancy (doping electrons) might be available for carrier mediation but is localized with a certain length and can strengthen the ferromagnetic exchange interaction between Co atoms. 相似文献
12.
13.
Difference in magnetic properties between Co-doped ZnO powder and thin film 总被引:1,自引:0,他引:1 下载免费PDF全文
This paper reports that the Zn掺钴;氧化锌粉末;氧化锌薄膜;磁性差异;晶体取向 ZnO, Co-doped, crystalline orientation, magnetism Project supported by the Shanghai Nanotechnology
Promotion Center (Grant No~0452nm071). 2006-09-152006-11-29 This paper reports that the Zn0.95Co0.05O polycrystalline powder and thin film were prepared by sol-gel technique under the similar preparation conditions. The former does not show typical ferromagnetic behaviour, while the latter exhibits obvious ferromagnetic properties at 5 K and room temperature. The UV-vis spectra and x-ray absorption spectra show that Co2+ ions are homogeneously incorporated into ZnO lattice without forming secondary phases.The distinct difference between film and powder sample is the c-axis (002) preferential orientation indicated by the x-ray diffraction pattern and field emission scanning electron microscopy measurement, which may be the reason why Zn0.95Co0.05O film shows ferromagnetic behaviour. 相似文献
14.
Using first-principles calculations based on density functional theory, we investigated systematically the electronic structures and magnetic properties of ZnO:Cu. The results indicate that Cu-doped ZnO prefers a ferromagnetic ground state and behaves like a half-metallic ferromagnet. The magnetic moment mainly localizes at Cu atom and the rest mainly comes from the spin polarized O atoms. It has been found that the ferromagnetic stability can be enhanced slightly by substituting an oxygen atom with one N atom; while the ferromagnetic stability can be weakened by replacing one O atom with a C atom. Due to absence of magnetic ion and the 100% spin polarization of the carriers in ZnO:Cu, one can expect that Cu-doped ZnO would be a useful half-metallic ferromagnet both in practical application and in theoretical studies. 相似文献
15.
Y.F. Chen F.F. ZhouQ.G. Song H.Y. YanX. Yang T. Wei 《Physica B: Condensed Matter》2012,407(3):464-467
Using first-principles calculations based on density functional theory, we investigated systematically the electronic structures and magnetic properties of Cr monodoped and (Cr, Al) codoped in ZnO. The results indicate that Cr monodoped in ZnO favors a spin-polarized state with a total magnetic moment of 7.50μB per supercell and the magnetic moment mainly comes from the unpaired 3d electrons of Cr atoms. In addition, it was found that the ferromagnetic exchange interaction between Cr atoms is short-ranged in Cr monodoped ZnO. Interestingly, the ferromagnetic stability can be enhanced significantly by codoping AlZn. We think that the enhancement of ferromagnetic stability should be attributed to the additional electrons introduced by AlZn codoping. 相似文献
16.
Influence of reducing anneal on the ferromagnetism in single crystalline Co-doped ZnO thin films 下载免费PDF全文
This paper reports that the high-quality Co-doped ZnO
single crystalline films have been grown on $a$-plane sapphire
substrates by using molecular-beam epitaxy. The as-grown films show
high resistivity and non-ferromagnetism at room temperature, while
they become good conductive and ferromagnetic after annealing in the
reducing atmosphere either in the presence or absence of Zn vapour.
The x-ray absorption studies indicate that all Co ions in these
samples actually substituted into the ZnO lattice without formatting
any detectable secondary phase. Compared with weak ferromagnetism
(0.16~$\mu _{\rm B}$/Co$^{2 + })$ in the Zn6110M, 7550P, 7280E, 7870D http://cpb.iphy.ac.cn/CN/10.1088/1674-1056/19/5/056101 https://cpb.iphy.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=111756 Co-doped ZnO, diluted magnetic semiconductors, x-ray
absorption fine structure, single crystalline thin films Project partially supported by
National Science Foundation of China (Grant No.~10804017), National
Science Foundation of Jiangsu Province of China (Grant
No.~BK2007118), Research Fund for the Doctoral Program of Higher
Education of China (Grant No.~20070286037), Cyanine-Project
Foundation of Jiangsu Province of China (Grant No.~1107020060),
Foundation for Climax Talents Plan in Six-Big Fields of Jiangsu
Province of China (Grant No.~1107020070) and New Century Excellent
Talents in University (NCET-05-0452). This paper reports that the high-quality Co-doped ZnO
single crystalline films have been grown on $a$-plane sapphire
substrates by using molecular-beam epitaxy. The as-grown films show
high resistivity and non-ferromagnetism at room temperature, while
they become good conductive and ferromagnetic after annealing in the
reducing atmosphere either in the presence or absence of Zn vapour.
The x-ray absorption studies indicate that all Co ions in these
samples actually substituted into the ZnO lattice without formatting
any detectable secondary phase. Compared with weak ferromagnetism
(0.16~$\mu _{\rm B}$/Co$^{2 + })$ in the Zn$_{0.95}$Co$_{0.05}$O
single crystalline film with reducing annealing in the absence of Zn
vapour, the films annealed in the reducing atmosphere with Zn vapour
are found to have much stronger ferromagnetism (0.65~$\mu _{\rm
B}$/Co$^{2 + })$ at room temperature. This experimental studies
clearly indicate that Zn interstitials are more effective than
oxygen vacancies to activate the high-temperature ferromagnetism in
Co-doped ZnO films, and the corresponding ferromagnetic mechanism is
discussed. Co-doped;ZnO;diluted;magnetic;semiconductors;x-ray;absorption;fine;structure;single;crystalline;thin;films This paper reports that the high-quality Co-doped ZnO single crystalline films have been grown on a-plane sapphire substrates by using molecular-beam epitaxy.The as-grown films show high resistivity and non-ferromagnetism at room temperature,while they become more conductive and ferromagnetic after annealing in the reducing atmosphere either in the presence or absence of Zn vapour.The x-ray absorption studies indicate that all Co ions in these samples actually substituted into the ZnO lattice without formatting any detectable secondary phase.Compared with weak ferromagnetism(0.16 μB/Co2+) in the Zn0.95Co0.05O single crystalline film with reducing annealing in the absence of Zn vapour,the films annealed in the reducing atmosphere with Zn vapour are found to have much stronger ferromagnetism(0.65 μB/Co2+) at room temperature.This experimental studies clearly indicate that Zn interstitials are more effective than oxygen vacancies to activate the high-temperature ferromagnetism in Co-doped ZnO films,and the corresponding ferromagnetic mechanism is discussed. 相似文献
17.
Santi Maensiri Jakkapon SreesongmuangChunpen Thomas Jutharatana Klinkaewnarong 《Journal of magnetism and magnetic materials》2006
This paper reports the first synthesis of nanocrystalline powders of Co-doped ZnO (i.e. Zn0.9Co0.1O) diluted magnetic semiconductor by a polymerizable precursor method using nitrate salts of Zn and Co and a mixed solution of citric acid and ethylene glycol as a chelating agent and reaction medium, respectively. The polymeric precursors were characterized by TG-DTA to determine the thermal decomposition and crystallization temperature which was found to be at 723 K. The precursors were calcined at different temperatures of 773, 873, 973, and 1073 K for 1 h to obtain nanocrystalline powders. The morphology and crystalline size of the calcined particles were evaluated by SEM, TEM and Scherrer's equation. The average particle sizes calcined at 773, 873, 973, and 1073 K for 1 h were, respectively, 20, 60, 80, 150 nm, obtained from TEM. The XRD and Fourier transmission infrared (FT-IR) results indicated that the synthesized Zn0.9Co0.1O powders have the pure wurtzite structure without any significant change in the structure affected by Co substitution. Optical absorption measurements showed absorption bands indicating the presence of Co2+ in substitution of Zn2+. Room temperature magnetization results revealed a ferromagnetic behavior for the Zn0.9Co0.1O powders. Although the specific magnetization seemed to change with the particle size but there was no clear dependency since the largest magnetization was observed in the powders calcined at 873 K (60 nm). Instead, the specific magnetization appeared to show a trend of dependency on the lattice constant c of the wurtzite unit cell. 相似文献
18.
Amorphous copper-doped ZnO thin films (ZnO:Cu) prepared on glass substrates by the radio-frequency magnetron co-sputtering have been investigated. Magnetic measurements indicated that the amorphous ZnO:Cu thin films were ferromagnetic at room temperature and the saturation magnetization was much higher than that of the polycrystalline films. X-ray diffraction results showed there was no Cu2O phase in amorphous ZnO:Cu films, which might be the reason for the high magnetic moment of the films. On the other hand, the high saturation magnetization of the amorphous ZnO:Cu films could also attribute to that there was no limit of solid solubility of Cu in amorphous ZnO solvent. The X-ray photoelectron spectroscopy study of the amorphous ZnO:Cu thin films reveal that copper was in Cu2+ chemical state. 相似文献
19.
采用共沉淀法在O2、Air、Ar等不同气氛下制备了名义组分为Zn0.98Fe0.02O的系列块材样品,实验上研究了烧结气氛对样品结构、形貌及磁性质的影响.XRD和SEM结果均显示,在Air和O2气氛中烧结的样品中缺陷较少,具有更好的结晶性.磁测量结果表明,在Air和O2氛中烧结的样品则未表现出明显的磁性特征,而在Ar气氛中烧结的样品在室温下呈现出弱铁磁性行为.样品中的弱铁磁性可能来源于与氧空位有关的束缚磁极化子间的铁磁耦合作用.该样品的HC和MR在低温下表现出反常变化,可能与磁畴壁移动有关. 相似文献
20.
Density functional theory based calculations have been carried out to study structural, electronic, and magnetic properties of Zn1-xCoxO (x = 0, 0.25, 0.50, 0.75) in the zinc-blende phase, and the generalized gradient approximation proposed by Wu and Cohen has been used. Our calculated lattice constants decrease while the bulk moduli increase with the increase of Co 2+ concentration. The calculated spin polarized band structures show the metallic behavior of Co-doped ZnO for both the up and the down spin cases with various doping concentrations. Moreover, the electron population is found to shift from the Zn-O bond to the Co-O bond with the increase of Co 2+ concentration. The total magnetic moment, the interstitial magnetic moment, the valence and the conduction band edge spin splitting energies, and the exchange constants decrease, while the local magnetic moments of Zn, Co, O, the exchange spin splitting energies, and crystal field splitting energies increase with the increase of dopant concentration. 相似文献