首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electronic band systems of zirconium monocarbide, ZrC, in the 16 000-19 000 cm−1 region have been observed following the reaction of laser-ablated Zr atoms with methane under supersonic free-jet conditions. Rotational analyses of high-resolution spectra have shown that the ground state of ZrC is a 3Σ state, with r0=1.8066 Å and an unexpectedly small spin-spin parameter, λ=0.5139 cm−1. The spectra are dense because of the five naturally occurring isotopes of Zr. Four of these, with mass numbers 90, 92, 94, and 96, have I=0, but the fifth, 91Zr, present in 11.22% abundance, has I=5/2. Lines of 91ZrC can be assigned in some of the strongest bands, and are found to display sizeable hyperfine splittings, with widths of up to 0.2 cm−1. Analysis shows that the largest hyperfine effects are in the ground state, where b=−0.03133±0.00015 cm−1 and c=−0.00123±0.00037 cm−1 (3σ error limits). The large Fermi contact parameter, b, indicates that an unpaired Zr 5 electron is present, which, taken together with the small value of λ, means that the ground state must be a 3Σ+ state, from the electron configuration (Zr 5)1 (C 2)1. Internal hyperfine perturbations occur between the F1 and F3 electron spin components of the ground state in the range N=2-4, producing extra lines in some of the branches; the perturbations are of the type ΔN=0, ΔJ=±2, and are a second-order effect arising because the F1 (J=N+1) and F3 (J=N−1) spin components both interact with the F2 (J=N) component through ΔN=0, ΔJ=±1 matrix elements of the Fermi contact operator. Second-order perturbations of this type can only occur in states that are very close to case (b) coupling.  相似文献   

2.
Spin-transfer driven switching was observed in MgO based magnetic tunnelling junctions (MTJ) with tunnelling magnetoresistance ratio of up to 160% and the average intrinsic switching current density (Jc0) down to 2 MA/cm2, which are the best known results reported in spin-transfer switched MTJ nanostructures. Based on a comparison of results both from MgO and AlOx MTJs, further switching current decrease via MgO dual structures with two pinned layers is discussed.  相似文献   

3.
Planar CdBxF2−xp-CdF2–CdBxF2−x sandwich nanostructures prepared on the surface of the n-type CdF2 bulk crystal are studied to register the spin transistor and quantum spin Hall-effects. The current–voltage characteristics of the ultra-shallow p+n junctions verify the CdF2 gap, 7.8 eV, and the quantum subbands of the 2D holes in the p-type CdF2 quantum well confined by the CdBxF2−xδ-barriers. The temperature and magnetic field dependencies of the resistance, specific heat and magnetic susceptibility demonstrate the high temperature superconductor properties for the CdBxF2−xδ-barriers. The value of the superconductor energy gap, 2Δ = 102.06 meV, determined by the tunneling spectroscopy method appears to be in a good agreement with the relationship between the zero-resistance supercurrent in superconductor state and the conductance in normal state, πΔ/e, at the energies of the 2D hole subbands. The results obtained are evidence of the important role of the multiple Andreev reflections in the creation of the high spin polarization of the 2D holes in the edged channels of the sandwich device. The high spin hole polarization in the edged channels is shown to identify the mechanism of the spin transistor and quantum spin Hall-effects induced by varying the top gate voltage, which is revealed by the first observation of the Hall quantum conductance staircase.  相似文献   

4.
Upconversion (UC) emissions at 360 ((5F, 3F, 5G)2 → 5I8), 392 (3K7/5G4 → 5I8), 428 (5G5 → 5I8), 554 (5S2/5F4 → 5I8), 667 (5F5 → 5I8) and 754 (5S2/5F4 → 5I7) nm were obtained in 0.1 mol% Ho3+/x mol% Yb3+:Y2O3 (x = 2, 5, 8, 11, 15) bulk ceramics under infrared (IR) excitation at 976 nm. The intensity of the UC luminescence centered at 554 and 754 nm increased with Yb3+ concentration from 2 to 5 mol% and decreased from 5 to 15 mol%, while the UC luminescence centered at 392, 428 and 667 nm increased with Yb3+ concentration from 2 to 11 mol%, then started to reduce with Yb3+ concentration until 15 mol%. This comes from the competition between the energy back transfer (EBT) process [5S2/5F4(Ho) + 2F7/2(Yb)  5I6(Ho) + 2F5/2(Yb) as well as 5F5(Ho) + 2F7/2(Yb)  5I7(Ho) + 2F5/2(Yb)] and spontaneous radiation process. The intensity of the UC luminescence centered at 360 nm always increases with Yb3+ concentration from 2 to 15 mol%. We believe that it may come from the cooperation of energy transfer process from Yb3+ ions in the 2F5/2 state and the cross energy transfer process 5S2/5F4 + 5I6 → (5F, 3F, 5G)2 + 5I8.  相似文献   

5.
We have demonstrated a magneto-optical spatial light modulator in which functionality is realized by (i) heating up to Curie temperature (Tc) magneto-optical elements (pixels) with a semiconductor laser and (ii) application of a switching magnetic field. The pixels were made of films of amorphous rare earth-transition metal compounds (TbFe films with Tc=403 K and DyFe films with Tc=343 K) having good magneto-optical responses for wavelengths from the visible spectral range. We have found that the magnetization direction of pixels can be modulated with a laser radiation density of 5 mJ/cm2 and in a switching magnetic field of 15 Oe.  相似文献   

6.
We report the temperature dependence of susceptibility for various pressures, magnetic fields and constant magnetic field of 5 T with various pressures on La2−2xSr1+2xMn2O7 single crystal to understand the effectiveness of pressure and magnetic field in altering the magnetic properties. We find that the Curie temperature, Tc, increases under pressure (dTc/dP=10.9 K/GPa) and it indicates the enhancement of ferromagnetic phase under pressure up to 2 GPa. The magnetic field dependence of Tc is about 26 K for 3 T. The combined effect of pressure and constant magnetic field (5 T) shows dTc/dP=11.3 K/GPa and the peak structure is suppressed and broadened. The application of magnetic field of 5 T realizes 3D spin ordered state below Tc at atmospheric pressure. Both peak structure in χc and 3D spin ordered state are suppressed, and changes to 2D-like spin ordered state by increase of pressure. These results reveal that the pressure and the magnetic field are more competitive in altering the magnetic properties of bilayer manganite La1.25Sr1.75Mn2O7 single crystal.  相似文献   

7.
A previously introduced formalism for calculating magnetic dipolar anisotropy energy ΔU in atomic layered structures is further developed. Numerical results are presented for ultrathin films with different close-packed (face centered cubic (FCC) [1 1 1]) and non-close-packed (FCC [0 0 1] and body centered cubic (BCC) [0 0 1]) structures. Structural effects become apparent in the magnetocrystalline dipolar anisotropy energy ΔUL when the ratio between the interlayer separation c and the 2D lattice constant a is changed. Despite the long-range character of the dipolar interaction, it is shown that the number of significantly interacting layers, conventially called coupled layers, is limited and depends on the structural aspect ratio c/a. The slope in the observed linear dependence between ΔUL and the inverse of the film thickness t is explained by the number of the so-called coupled layers, and not by a surface contribution to volume values. Size effects appearing in ΔU are unambiguously distinguished from structural effects. Effective anisotropy energy ΔUeff and ΔU are presented for Co [0 0 0 1] and Ni [0 0 1] ultrathin films. It is verified that the dipolar interaction makes an important contribution to ΔUeff, but the spin reorientation transition is determined by non-dipolar interactions. The former favors the magnetization switching only when the size aspect ratio d/t, with d the characteristic lateral dimension of the film, is sufficiently small. Applications to other layered arrays of magnetic dipoles are straightforward.  相似文献   

8.
Bit-patterned media based on a single-bit-per-island may be a promising candidate for perpendicular magnetic recording at the Tb/in2 level because they could provide a lower noise and higher density. The understanding of magnetization reversal processes in such patterned media is important. In this work, the range of single domain island size based on Co/Pd bit-patterned media was determined. Demagnetization effect, dipolar interactions and switching field distribution (SFD) for bit-patterned media were quantitatively studied by the simulation based on Landau-Lifshitz-Gilbert equation. The total hysteresis loops and SFD were comparable with the experiment ones. The SFD increased from 2σ=1.2 kOe (as the calculated intrinsic SFD) to the experimental value of 1.9 kOe due to dipolar interactions which is in a good agreement with the experimental results (2.0 kOe). Optimized patterned structure with a minimized SFD and maximized data storage densities was found to have an island size of 10 nm and islands separation of 20 nm. The calculated ratio of SFD/Hc (Hc: the coercivity) is 9.2%, which is below the threshold of 10% for 1 Tb/in2 pattern media.  相似文献   

9.
We report the observation of a pronounced dip in the in-plane magnetic field (H) dependence of the critical current density Jc(H) and a peak in resistance R(H) of a NbN-HoNi5 bilayer at temperatures below the magnetic ordering temperature (TCurie ≈ 3.5 K) of HoNi5, which is lower than the onset temperature (≈9 K) of superconductivity in the NbN layer. The extrema in Jc(H) and R(H) appear at fields much below the upper critical field of NbN. We attribute these features to a coupling between localized out-of-plane moments present in the magnetic film and Pearl vortices of the superconducting layer. A spin re-orientation transition of the localized moments by H breaks this coupling, leading to the observed excess dissipation.  相似文献   

10.
We have studied a hot-wall heating system to produce GdBa2Cu3Oy (GdBCO) films with large critical currents (Ic) at a high production rate by a pulsed-laser-deposition (PLD) method. GdBCO films fabricated at a production rate of 30 m/h under the optimized conditions, especially a distance of 95 mm between the target and the substrate (T–S), exhibited high critical current densities (Jc) of about 3 MA/cm2 and Ic over 300 A at a thickness of 1–2 μm. Furthermore, long GdBCO tapes prepared by repeated depositions at each tape-passing speed of 80 m/h showed uniform Ic distribution along the longitudinal direction, because the hot-wall system enabled to stabilize temperature within a few degrees at 800 °C. A 170 m long tape with Ic over 600 A was successfully fabricated at a production rate of 16 m/h using a laser power of 360 W.  相似文献   

11.
We report time-resolved transient spectral hole burning of Verneuil-grown 20 ppm and ca. 0.6 ppm ruby (Al2O3:Cr3+) in zero field and low magnetic fields B∥c at 4 K. The hole-burning spectroscopy of the 20 ppm sample implies relatively rapid cross relaxation in the 4A2 ground state on the ∼1 ms timescale both in zero field and in low magnetic fields, B∥c, up to 0.2 T. In the 0.6 ppm sample, side-hole to anti-hole conversion is observed both in zero field and in low magnetic fields. This conversion is caused by population storage in 4A2 ground state levels. Spin-lattice relaxation, on the 200 ms timescale, is directly observed from the time dependence of the resonant hole and anti holes in B∥c, consistent with a very low cross-relaxation rate. However, in zero field cross relaxation in the 4A2 ground state is still a significant relaxation mechanism for the 0.6 ppm sample resulting in hole decay in ∼50 ms.  相似文献   

12.
High-resolution (0.03 cm−1) absolute infrared photoabsorption cross-sections of octafluorocyclobutane (c-C4F8) and octafluorocyclopentene (c-C5F8) have been measured using Fourier-transformed infrared (FTIR) spectroscopy at 279 and 297 K. Radiative forcing and global warming potential of these two species was estimated using the measured infrared cross section spectra.  相似文献   

13.
Magnetic susceptibility, heat capacity and electrical resistivity measurements have been carried out on a new ruthenate, La2RuO5 (monoclinic, space group P21/c) which reveal that this compound is a magnetic semiconductor with a high magnetic ordering temperature of 170 K. The entropy associated with the magnetic transition is 8.3 J/mol K close to that expected for the low spin (S=1) state of Ru4+ ions. The low temperatures specific heat coefficient γ is found to be nearly zero consistent with the semiconducting nature of the compound. The magnetic ordering temperature of La2RuO5 is comparable to the highest known Curie temperature of another ruthenate, namely, metallic SrRuO3, and in both these compounds the nominal charge state of Ru is 4+.  相似文献   

14.
We conducted a detailed study of hard axis magnetic field (Hhard) dependence on current-induced magnetization switching (CIMS) in MgO-based magnetic tunnel junctions (MTJs) with various junction sizes and various uniaxial anisotropy fields. The decreases in critical current density (Jc) and the intrinsic critical current density (Jc0) estimated from the pulse duration dependence on Jc in CIMS are observed when applying Hhard for all MTJs. The decrease in energy barrier of CIMS is also observed except for the largest sample. These results indicate that the reduction of Jc is attributable to both the increase of spin-transfer efficiency and the decrease in energy barrier in the case of applying Hhard. The Jc0 decreases with increase in the mutual angle between the direction of magnetization and the easy axis (θf), which is consistent with the theoretical prediction proposed by Slonczewski. The degree of the reduction of Jc0 for the same value of Hhard decreases with decreasing size of MTJs. This behavior is considered to be related to not only decrease in θf due to the increase in anisotropy field in MTJs, but also to the increase in the variance of the initial angle of magnetization due to the thermally activated magnon excitation. The stable switching endurance related to CIMS was observed in a wide range of MTJ sizes when applying Hhard. Moreover, we proposed a new architecture and a new switching method considering write disturbance. These results would be useful for application to spin memory and other spin-electronic devices.  相似文献   

15.
We report the 11B and 195Pt NMR measurements in non-centrosymmetric superconductors Li2(Pd1−xPtx)3B (x = 0.0, 0.2, 0.5, 1.0). From the measurements of spin–lattice relaxation time (T1), we found that there was a coherence peak (CP) just below superconducting transition temperature (Tc) for x = 0–0.5 but no CP in x = 1. We demonstrated that the system for x = 0–0.5 were BCS superconductors but there existed line node in the superconducting gap for x = 1.0. The 195Pt Knight Shift in x = 0.2 decreased below Tc, indicating spin-singlet state. The results showed that BCS superconducting state evolves into an exotic state with line-nodes in the gap function when x is increased, as the spin–orbit coupling is enhanced.  相似文献   

16.
The magnetic properties of the intermetallic compound Dy2CuIn3 have been investigated. Ac and dc-susceptibility measurements indicate an onset of antiferromagnetic ordering at TN=19.5 K and an additional frequency dependent transition at Tds∼9 K. Neutron diffraction studies confirm the ordered transition at 19.5±1 K. The magnetic unit cell can be described by the propagation vector k=(0.25,0.25,0) with the magnetic moment μ=2.63(4)μB/Dy3+ parallel to the c-axis. Nevertheless, neutron diffraction reveals no additional magnetic phase transition around or below 9 K, which suggests that, at lower temperatures, a spin glass state may be formed in coexistence with the antiferromagnetic mode as a result of frustration and the antagonism between ferromagnetic and antiferromagnetic exchange interactions.  相似文献   

17.
Single crystals of TlGaS2 were prepared by a special modified Bridgman technique and used to investigate the switching phenomena. The particular interest shown in switching studies of p-type TlGaS2 compound is associated with the possibility of its uses as an effective switching and memory elements in electronic devices. The switching effect observed in such crystal shows a memory character. Using a crystal holder and cryostat we measured the switching phenomenon at different ambient conditions such as temperature, light illumination as well as sample thickness. Pronounced parameters for switching for sample of thickness 0.17 cm were determined from the experimental data such as threshold voltage Vth = 400 V, threshold current Ith = 37 μA, holding voltage Vh = 350 V, holding current Ih = 42.3 × 10−4 A, threshold power Pth = 1.48 × 10−2 W, threshold field Eth = 196.429 V/cm as well as the ratio between the resistance in the off state ROFF to the resistance in the conducting state RON as 130.253. The factors affecting these parameters have also been investigated.  相似文献   

18.
Influence of magnetic annealing at 823 K up to 10 T (T) on the phonon behaviors of nanocrystalline BiFeO3 was investigated by Raman spectroscopy. The frequencies of fundamental Raman modes increase obviously with increasing annealing magnetic field, and the intensity of the 1260 cm−1 two-phonon mode decreases. The pronounced anomalies of Raman phonon modes under magnetic annealing are attributed to the change of the spin-phonon coupling due to the modulation of spiral spin order. Furthermore, the temperature dependence of Raman peak positions, for the two prominent modes (147 and 176 cm−1), show no notable anomaly around TN except the sample annealed under 10 T magnetic field; meanwhile, in this sample, another obvious phonon anomaly occurs at ∼150 K (another magnetic phase transition point), which indicate that stronger magnetic annealing with 10 T intensely enhances the spin-phonon coupling, and possibly increases magnetoelectric coupling of nanocrystalline BiFeO3 due to severely modulation of spiral spin order.  相似文献   

19.
This paper presents an analytical and numerical investigation of an intense circularly polarized wave propagating along the static magnetic field parallel to oscillating magnetic field in magnetoactive plasma. In the relativistic regime such a magnetic field is created by pulse itself. The authors have studied different regimes of propagation with relativistic electron mass effect for magnetized plasma. An appropriate expression for dielectric tensor in relativistic magnetoactive plasma has been evaluated under paraxial theory. Two modes of propagation as extraordinary and ordinary exist; because of the relativistic effect, ultra-strong magnetic fields are generated which significantly influence the propagation of laser beam in plasma. The nature of propagation is characterized through the critical-divider curves in the normalized beam width with power plane For given values of normalized density (ωp/ω) and magnetic field (ωc/ω) the regions are namely steady divergence (SD), oscillatory divergence (OD) and self-focusing (SF). Numerical computations are performed for typical parameters of relativistic laser-plasma interaction: magnetic field B = 10-100 MG; intensity I = 1016 to 1020 W/cm2; laser frequency ω = 1.1 × 1015 s−1; cyclotron frequency ωc = 1.7 × 1013 s−1; electron density ne = 2.18 × 1020 cm−3. From the calculations, we confirm that a circularly polarized wave can propagate in different regimes for both the modes, and explicitly indicating enhancement in wave propagation, beam focusing/self-guiding and penetration of E-mode in presence of magnetic field.  相似文献   

20.
The microwave spectra of two isotopic species of acetyl isocyanate, 13CH3C(O)NCO and CD3C(O)NCO, were observed in order to determine the ro structure and confirmation of the molecular conformation. These isotopic species were prepared by reacting acetyl-2-13C-chloride or acetyl-d3 chloride with sliver cyanate. The rotational spectra of A-level in 26.5-60.0 GHz region have been observed by Stark-modulated microwave spectrometer. Some absorption lines in E-level were observed in 13CH3C(O)NCO. The rotational constants in the ground vibrational state were determined to be A = 10654.8(18), B = 2177.32(2), and C = 1827.65(2) MHz for 13CH3C(O)NCO, and A = 9713.90(6), B = 2042.04(2), and C = 1722.78(2) MHz for CD3C(O)NCO, respectively. The values of ΔI (= Ic − Ia − Ib) of the 13C species (−3.024(13) uÅ2) and the d3 species (−6.163(3) uÅ2) indicate that the molecule has Cs symmetry. The rs coordinates of the carbon atom in the methyl group were determined to be |a| = 2.183(3), |b| = 0.706(9), and |c| = 0.080(87) Å. The determined coordinates were in agreement with those calculated for the cis form, in which the carbonyl group is eclipsed by the NCO group. The six structural parameters of the cis form were adjusted by fitting to the observed rotational constants. The observed rotational constants of the cis form were in better agreement with those calculated using the QCISD/6-31G (d, p) level rather than those calculated using the MP2/6-31G (d, p) level. The barrier of internal rotation of the methyl group was determined as 4.283(16) kJ mol−1 in 13CH3C(O)NCO. The structural tendencies and the relationship between RNC and 14N quadrupole coupling constants (χcc) were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号