首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to obtain a targeting drug carrier system, magnetic polylactic acid (PLA) microspheres loading curcumin were synthesized by the classical oil-in-water emulsion solvent-evaporation method. In the Fourier transform infrared spectra of microspheres, the present functional groups of PLA were all kept invariably. The morphology and size distribution of magnetic microspheres were observed with scanning electron microscopy and dynamic light scattering, respectively. The results showed that the microspheres were regularly spherical and the surface was smooth with a diameter of 0.55-0.75 μm. Magnetic Fe3O4 was loaded in PLA microspheres and the content of magnetic particles was 12 wt% through thermogravimetric analysis. The magnetic property of prepared microspheres was measured by vibrating sample magnetometer. The results showed that the magnetic microspheres exhibited typical superparamagnetic behavior and the saturated magnetization was 14.38 emu/g. Through analysis of differential scanning calorimetry, the curcumin was in an amorphous state in the magnetic microspheres. The drug loading, encapsulation efficiency and releasing properties of curcumin in vitro were also investigated by ultraviolet-visible spectrum analysis. The results showed that the drug loading and encapsulation efficiency were 8.0% and 24.2%, respectively. And curcumin was obviously slowly released because the cumulative release percentage of magnetic microspheres in the phosphate buffer (pH=7.4) solution was only 49.01% in 72 h, and the basic release of curcumin finished in 120 h.  相似文献   

2.
Spherically shaped thermosensitive micro and nanoparticles based on N-isopropylacrylamide were synthesized using a novel inverse suspension polymerization technique which enables a bead formation within minutes. In addition to the rapidity, the suspension procedure provides an effective platform for the encapsulation of magnetic colloids and simultaneous drug analogous substances. The presence of the magnetic colloids allows an inductive heating of the particles using an alternating magnetic field above the polymer transition temperature (>35 °C). This results in a pronounced de-swelling accompanied by a release of the encapsulated substances. The potential of this technology for a new contactless controllable drug releasing approach is exemplarily demonstrated using rhodamine B and methylene blue as drug analogous substances.  相似文献   

3.
The concept of using magnetic particles (seeds) as the implant for implant assisted-magnetic drug targeting (IA-MDT) was analyzed in vitro. Since this MDT system is being explored for use in capillaries, a highly porous (ε∼70%), highly tortuous, cylindrical, polyethylene polymer was prepared to mimic capillary tissue, and the seeds (magnetite nanoparticles) were already fixed within. The well-dispersed seeds were used to enhance the capture of 0.87 μm diameter magnetic drug carrier particles (MDCPs) (polydivinylbenzene embedded with 24.8 wt% magnetite) under flow conditions typically found in capillary networks. The effects of the fluid velocity (0.015–0.15 cm/s), magnetic field strength (0.0–250 mT), porous polymer magnetite content (0–7 wt%) and MDCP concentration (C=5 and 50 mg/L) on the capture efficiency (CE) of the MDCPs were studied. In all cases, when the magnetic field was applied, compared to when it was not, large increases in CE resulted; the CE increased even further when the magnetite seeds were present. The CE increased with increases in the magnetic field strength, porous polymer magnetite content and MDCP concentration. It decreased only with increases in the fluid velocity. Large magnetic field strengths were not necessary to induce MDCP capture by the seeds. A few hundred mT was sufficient. Overall, this first in vitro study of the magnetic seeding concept for IA-MDT was very encouraging, because it proved that magnetic particle seeds could serve as an effective implant for MDT systems, especially under conditions found in capillaries.  相似文献   

4.
This study reports on the preparation, characterization and in vitro toxicity test of a new nano-drug delivery system (NDDS) based on bovine serum albumin (BSA) nanospheres which incorporates surface-functionalized magnetic nanoparticles (MNP) and/or the silicon(IV) phthalocyanine (NzPc). The new NDDS was engineered for use in photodynamic therapy (PDT) combined with hyperthermia (HPT) to address cancer treatment. The BSA-based nanospheres, hosting NzPc, MNP or both (NzPc and MNP), present spherical shape with hydrodynamic average diameter values ranging from 170 to 450 nm and zeta potential of around −23 mV. No difference on the fluorescence spectrum of the encapsulated NzPc was found regardless of the presence of MNP. Time-dependent fluorescence measurements of the encapsulated NzPc revealed a bi-exponential decay for samples incorporating only NzPc and NzPc plus MNP, in the time window ranging from 1.70 to 5.20 ns. The in vitro assay, using human fibroblasts, revealed no cytotoxic effect in all samples investigated, demonstrating the potential of the tested system as a synergistic NDDS.  相似文献   

5.
We describe the preparation (by nanoprecipitation) and characterization of nanospheres (NPs) for magnetic drug targeting made of a magnetic fluid with poly(ethylene glycol), poly(d,l-lactic-co-glycolic acid) (PLGA), and the anticancer drug paclitaxel (Taxol®). Infrared spectroscopy confirmed the incorporation of the drug in the PLGA NPs, which were also characterized in terms of morphology, size (typical diameter 200-250 nm) and colloidal stability in aqueous solutions of NaCl. Drug release and in vivo toxicity experiments of the prepared samples were performed. Their stability, magnetic properties (superparamagnetism), and lethal dose were found to be acceptable for the proposed application in cancer therapy.  相似文献   

6.
Previous studies have shown that magnetic nanoparticles possess great potential for various in vivo applications such as magnetic resonance imaging contrast enhancement, tissue repair, cancer treatment agents, and controlled drug delivery. Many of these applications require that magnetic nanoparticles be colloidally stable in biological media. The goal of this study was to obtain a magnetic fluid produced by the colloidal suspension of manganese/zinc ferrite (MZF) nanoparticles that could be stably dispersed in aqueous solution throughout the range of physiological pH and ionic strength. These superparamagnetic nanoparticles were stabilized through steric repulsion by coating with biologically compatible carboxymethyl dextran (CMDx). Samples of the resultant magnetic fluid were analyzed using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), X-ray diffraction (XRD), zeta potential measurements, dynamic light scattering, transmission electron microscopy (TEM), and SQUID magnetometry. Results show that we obtained superparamagnetic metal-oxide crystals with composition of Mn0.24Zn0.76Fe2O4. Cell viability measurements show the material is non-toxic to MCF-7 and CaCo-2 cell lines at concentrations of up to 7.5 mg/mL of particle fraction for contact time of up to 48 h.  相似文献   

7.
The adsorption of alginate (Alg) onto the surface of in water dispersed Fe3O4 nanoparticles and zeta potential of alginate-coated Fe3O4 nanoparticles have been investigated to optimize the colloidal stability of Alg-coated Fe3O4 nanoparticles. The adsorption amount of Alg increased with the decrease of adsorption pH. The zeta potential of Fe3O4 nanoparticles shifted to a lower value after adsorption of Alg. The lower adsorption pH was the lower zeta potential of Fe3O4 nanoparticles became. The Alg-coated Fe3O4 nanoparticles were found to be stabilized by steric and electrostatic repulsions. Those prepared at pH 6 were not stable around pH 5, and those prepared at pH 4 became unstable at pH below 3.5. Alg of Mw 45 kDa was a little bit more adsorbed onto nanoparticles surface than that of Mw 24 kDa. An average Fe3O4 core size of 9.3 ± 1.7 nm was found by transmission electronic microscopy. An average hydrodynamic diameter of 30-150 nm was measured by photon correlation spectroscopy. However, an average core size of 10 nm and an average hydrodynamic diameter of 38 nm were estimated from the magnetization curve of the concentrated magnetic fluids (MFs). The maximum available saturation magnetization of MFs was about 3.5 kA/m.  相似文献   

8.
A magnetic nanosystem that simultaneously implements the cyclodextrin–drug complexation power, bioadhesive property of gum arabic (GA) and inherent magnetic properties of Fe3O4 nanoparticles, has recently been reported. In this study, a magnetic nanocarrier was fabricated by conjugating 2-hydroxypropyl-cyclodextrin (HCD) onto the gum arabic modified magnetic nanoparticles (GAMNP). The analyses of transmission electron microscopy (TEM) and dynamic light scattering (DLS) revealed that the product had a mean diameter of 14.8 nm and a mean hydrodynamic diameter of 29.3 nm. This nanocarrier showed good loading efficiency for ketoprofen. In addition, the in vitro release profile of ketoprofen from HCD-GAMNP was characterized by an initial fast release followed by a delayed release phase. In view of the better biocompatibility and the combined properties like specific targeting, complexation ability with hydrophobic drugs makes the nanosystem an exciting prospect for drug delivery.  相似文献   

9.
This paper describes a new formulation of magnetic nanoparticles coated by a novel polymer matrix—O-carboxylmethylated chitosan (O-CMC) as drug/gene carrier. The O-CMC magnetic nanoparticles were derivatized with a peptide sequence from the HIV-tat protein to improve the translocational property and cellar uptake of the nanoparticles. To evaluate the O-MNPs-tat as drug carriers, MTX was incorporated as a model drug and MTX-loaded O-MNPs-tat with an average diameter of 45–60 nm were prepared and characterized by TEM, AFM and VSM. The cytotoxicity of MTX-loaded O-MNPs-tat was investigated with U-937 tumor cells. The results showed that the MTX-loaded O-MNPs-tat retained significant antitumor toxicity; additionally, sustained release of MTX from O-CMC nanoparticles was observed in vitro, suggesting that the tat-O-MNPs could be a novel magnetic targeting carrier.  相似文献   

10.
The development of anticancer drug delivery systems based on biodegradable nanoparticles has been intended to maximize the localization of chemotherapy agents within tumor interstitium, along with negligible drug distribution into healthy tissues. Interestingly, passive and active drug targeting strategies to cancer have led to improved nanomedicines with great tumor specificity and efficient chemotherapy effect. One of the most promising areas in the formulation of such nanoplatforms is the engineering of magnetically responsive nanoparticles. In this way, we have followed a chemical modification method for the synthesis of magnetite/chitosan-l-glutamic acid (core/shell) nanostructures. These magnetic nanocomposites (average size ≈340 nm) exhibited multifunctional properties based on its capability to load the antitumor drug doxorubicin (along with an adequate sustained release) and its potential for hyperthermia applications. Compared to drug surface adsorption, doxorubicin entrapment into the nanocomposites matrix yielded a higher drug loading and a slower drug release profile. Heating characteristics of the magnetic nanocomposites were investigated in a high-frequency alternating magnetic gradient: a stable maximum temperature of 46 °C was successfully achieved within 40 min. To our knowledge, this is the first time that such kind of stimuli-sensitive nanoformulation with very important properties (i.e., magnetic targeting capabilities, hyperthermia, high drug loading, and little burst drug release) has been formulated for combined antitumor therapy against cancer.  相似文献   

11.
The objective of this research was to compare the effects of two different surfactants on the physicochemical properties of thermo-responsive poly(N-isopropylacrylamide-acrylamide-allylamine) (PNIPAAm-AAm-AH)-coated magnetic nanoparticles (MNPs). Sodium dodecyl sulfate (SDS) as a commonly used surfactant in nanoparticle formulation process and Pluronic F127 as an FDA approved material were used as surfactants to synthesize PNIPAAm-AAm-AH-coated MNPs (PMNPs). The properties of PMNPs synthesized using SDS (PMNPs-SDS) and PF127 (PMNPs-PF127) were compared in terms of size, polydispersity, surface charge, drug loading efficiency, drug release profile, biocompatibility, cellular uptake, and ligand conjugation efficiency. These nanoparticles had a stable core–shell structure with about a 100-nm diameter and were superparamagnetic in behavior with no difference in the magnetic properties in both types of nanoparticles. In vitro cell studies showed that PMNPs-PF127 were more cytocompatible and taken up more by prostate cancer cells than that of PMNPs-SDS. Cells internalized with these nanoparticles generated a dark negative contrast in agarose phantoms for magnetic resonance imaging. Furthermore, a higher doxorubicin release at 40 °C was observed from PMNPs-PF127, and the released drugs were pharmacologically active in killing cancer cells. Finally, surfactant type did not affect the conjugation efficiency to the nanoparticles when folic acid was used as a targeting ligand model. These results indicate that PF127 might be a better surfactant to form polymer-coated magnetic nanoparticles for targeted and controlled drug delivery.  相似文献   

12.
A novel chitosan coated poly(butyl cyanoacrylate) (PBCA) nanoparticles loaded doxorubicin (DOX) were synthesized and then conjugated with folic acid to produce a folate-targeted drug carrier for tumor-specific drug delivery. Prepared nanoparticles were surface modified by folate for targeting cancer cells, which is confirmed by FTIR spectroscopy and characterized for shape, size, and zeta potential measurements. The size and zeta potential of prepared DOX-PBCA nanoparticles (DOX-PBCA NPs) were almost 174 ± 8.23 nm and +23.14 ± 4.25 mV, respectively with 46.8 ± 3.32% encapsulation capacity. The transmission electron microscopy study revealed that preparation allowed the formation of spherical nanometric and homogeneous. Fluorescent microscopy imaging and flow cytometry analysis revealed that DOX-PBCA NPs were endocytosed into MCF-7 cells through the interaction with overexpressed folate receptors on the surface of the cancer cells. The results demonstrate that folate-conjugated DOX-PBCA NPs drug delivery system could provide increased therapeutic benefit by delivering the encapsulated drug to the folate receptor positive cancer cells.  相似文献   

13.
Single domain magnetic CoFe2O4 nanoparticles with spinel structure were prepared by the coprecipitation method. Particles with size of 16, 20, 40 and 60 nm were synthesized by sintering the precursor at 500, 600, 800 and 900 °C, respectively. The magnetic hysteresis measurement of CoFe2O4 particles showed that particles were single domain particles with similar saturation magnetization (∼300 emu/cm3) at room temperature. The zeta potential study of suspensions (CoFe2O4-acetylacetone system) with various particle sizes showed the suspension systems had similar zeta potential values (∼40 mV). The effects of magnetic particle size on the suspension stability characterized by electrophoretic deposition yields and sediment volumes were studied. The suspension stability decreased with an increase in particle size and a flocculation threshold of particle radius a was found at 30 nm. A suspension stability theory approaching to the phenomenon was established. The theory based on the DLVO theory was developed by introducing an extra magnetic interaction force. Dormann model was adopted, in which the magnetic interactions of two spherical nanoparticles were investigated in terms of dipole-dipole interactions. Compared to DLVO, suspension's physical parameters not only zeta potential ζ and the Debye length 1/κ, but also particles' radius a brought about stable to flocculation transition in the theory.  相似文献   

14.
Crocin (saffron bioactive) loaded protein nanoparticles were prepared from three underutilised cereal varieties viz., sorghum (SPCN), foxtail millet (FPCN) and pearl millet (PPCN) using ultrasonication technique. The particle size of crocin loaded protein complex was attained in the nano range with reduced polydispersity index and negative zeta potential. The encapsulation efficiency of crocin in protein nanoparticles was found to be 83.78% (FPCN), 78.74 % (SPCN) and 70.01% (PPCN). The topographical images of crocin loaded protein nano complex was revealed using field emission-scanning electron microscopy (FE-SEM). The attenuated total reflectance fourier transform infra-spectroscopy (ATR-FTIR) analysis showed the characteristic peaks of crocin at 956, 1700 and 3350 cm−1 in protein-crocin nanocomplex as a confirmatory test for nanoencapsulation. The antimicrobial activity of crocin loaded protein nanocomplex against three strains (Escherichia coli, Staphylococcus aureus and Fusarium oxysporium) were also evaluated. In vitro release studies showed higher content of crocin released in simulated intestinal conditions ensuring its controlled release at target site. Bioactivity (anti-cancerous and anti-hypertensive) of crocin upon in-vitro digestion were well retained indicating that protein nanoparticles can act as an effective wall material. Our results suggest that protein nanoparticles prepared in this study can act as an effective oral delivery vehicle for crocin that could be used for development of functional foods.  相似文献   

15.
Recently, protein-based nanoparticles as drug delivery systems have attracted great interests due to the excellent behavior of high biocompatibility and biodegradability, and low toxicity. However, the synthesis techniques are generally costly, chemical reagents introduced, and especially present difficulties in producing homogeneous monodispersed nanoparticles. Here, we introduce a novel physical method to synthesize protein nanoparticles which can be accomplished under physiological condition only through ultraviolet (UV) illumination. By accurately adjusting the intensity and illumination time of UV light, disulfide bonds in proteins can be selectively reduced and the subsequent self-assembly process can be well controlled. Importantly, the co-assembly can also be dominated when the proteins mixed with either anti-cancer drugs, siRNA, or active targeting molecules. Both in vitro and in vivo experiments indicate that our synthesized protein–drug nanoparticles (drug-loading content and encapsulation efficiency being ca. 8.2% and 70%, respectively) not only possess the capability of traditional drug delivery systems (DDS), but also have a greater drug delivery efficiency to the tumor sites and a better inhibition of tumor growth (only 35% of volume comparing to the natural growing state), indicating it being a novel drug delivery system in tumor therapy.  相似文献   

16.
In this paper, the monodisperse silica nanoparticles were prepared by ultrasonic-assisted Stober method, and it explained that the ultrasonic cavitation effect shortened the reaction time from the original hours to f5 min. The effects of ultrasonic time, ultrasonic power, and stirring speed on the morphology, composition, and specific surface area of silica nanoparticles were investigated by field emission electron microscopy (FE-SEM). The results showed that nanoparticles with the best dispersity and the most uniform morphology were obtained under the optimized conditions (ultrasonic time is 5 min, ultrasonic power is 160 W, and the magnetic stirring speed is 999 rpm). The phase composition of SiO2 was characterized by high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), nano-size/zeta potential analyzer, and Fourier transform infrared spectroscopy (FT-IR). It showed that all typical peaks of samples are in line with the SiO2 spectrum, the particle size distribution and zeta potential value of the silica is 615?±?35.6 nm and 59.87?±?0.91 mv, respectively, which further verified that the spherical silica nanoparticles with good dispersity can be synthesized in a very short time. Hemolysis test showed that nano-SiO2 had high blood compatibility and biocompatibility when its concentration was less than 1 mg/mL. Doxorubicin (DOX·HCl) was regarded as a drug model to investigate the drug loading capacity of synthesized SiO2; the results showed that the drug loading capacity and encapsulation efficiency reached 42.6?±?1.2 and 85.2?±?2.5%, respectively. Furthermore, the drug release experiments fitted well with the Higuichi equation with correlation coefficient (R2) of 0.9984, which further confirmed that the SiO2/DOX drug delivery system has the controlled release property, and it also displayed pH-responsive behavior (at 96 h, the cumulative release of SiO2/DOX in PBS solution with pH 7.4, 6.5, and 5.0 was 48.33, 62.31, and 94.86%, respectively). Therefore, this paper provides the possibility for developing more effective, safer, and more targeted controlled drug carriers.  相似文献   

17.
Paclitaxel (PTX) is a well-known antitumor drug, widely utilized in the treatment of breast, ovarian, head, and neck tumors, among others. The low aqueous solubility (< 1.0 μg/mL; log P = 3.96) limits its use by intravenous route, and alternatives found for the marketed products are associated with high toxicity. Incorporation of PTX into lipid nanocarriers has been considered an interesting nontoxic alternative for this route, but drug loading is usually low. This study aimed to analyze the influence of the lipid composition and three different lipid nanosystems—solid lipid nanoparticles, nanostructured lipid carriers (NLCs), and nanoemulsion—in PTX encapsulation and its biological response. The three proposed systems were prepared by hot melt homogenization followed by ultrasonication. Among the blank formulations first prepared, NLC had the smallest size (74 ± 1 nm), with negative zeta potential (? 11.4 ± 0.1 mV). The incorporation of 0.10 mg/mL PTX into this NLC formulation yielded high and stable encapsulation (0.089 ± 0.003 mg/mL), also supported by polarized light microscopy and differential scanning calorimetry curves. NLC-PTX was very effective against MCF-7 (IC50 25.33 ± 3.17 nM) and MDA-MB-231 breast cancer cell lines (IC50 2.13 ± 0.21 nM), compared to free PTX (IC50 > 500 nM). In addition, no significant cytotoxicity was found against fibroblast cells. Taken together, these results demonstrated that PTX was successfully incorporated into NLC with appropriate physicochemical characteristics for intravenous administration, suggesting that the use of NLC as vehicle to incorporate PTX may be a promising strategy in the treatment of breast cancer.  相似文献   

18.
This work explores the functionalization of an organic-inorganic MoS2 lamellar compound, prepared by a chemical liquid deposition method (CLD), that has an interlamellar distance of ∼5.2 nm, using clusters of gold nanoparticles. The gold nanoparticles have a mean diameter of 1.2 nm, a stability of ∼85 days, and a zeta potential measured to be ζ = −6.8 mV (solid). The nanoparticles are localized in the hydrophilic zones, defined by the presence of amine groups of the surfactant between the lamella of MoS2. SEM, TEM, EDAX and electron diffraction provide conclusive evidence of the interlamellar insertion of the gold nanoparticles in the MoS2.  相似文献   

19.
Fang JY  Hung CF  Hua SC  Hwang TL 《Ultrasonics》2009,49(1):39-14347
Camptothecin is a topoisomerase I inhibitor that acts against a broad spectrum of cancers. However, its clinical application is limited by its insolubility, instability, and toxicity. The aim of the present study was to develop acoustically active nanoemulsions for camptothecin encapsulation to circumvent these delivery problems. The nanoemulsions were prepared using liquid perfluorocarbons and coconut oil as the cores of the inner phase. These nanoemulsions were stabilized by phospholipids and/or Pluronic F68 (PF68). The nanoemulsions were prepared at high drug loading of ∼100% with a mean droplet diameter of 220-420 nm. Camptothecin in these systems showed retarded drug release. Camptothecin in nanoemulsions with a lower oil concentration exhibited cytotoxicity against melanomas and ovarian cancer cells. Confocal laser scanning microscopy confirmed nanoemulsion uptake into cells. Hemolysis caused by the interaction between erythrocytes and the nanoemulsions was investigated. Formulations with phosphatidylethanolamine as the emulsifier showed less hemolysis than those with phosphatidylcholine. Using a 1 MHz ultrasound, an increased release of camptothecin from the system with lower oil concentration could be established, illustrating a drug-targeting effect.  相似文献   

20.
Recent studies have revealed the existence of liver cancer stem cells (CSCs). Therefore, there is an urgent need for new and effective treatment strategies specific to liver CSCs. In this work, the poly(d,l-lactide-coglycolide) nanoparticles containing paclitaxel were prepared by emulsification-solvent evaporation method. The nanoparticles decorated with anti-CD133 antibody, termed targeted nanoparticles, were prepared by carbodiimide chemistry for liver CSCs. The physicochemical characteristics of the nanoparticles (i.e., encapsulation efficiency, particle size distribution, morphology, and in vitro release) were investigated. Cellular uptake and accumulation in tumor tissue of nanoparticles were observed. To assess anti-tumor activity of nanoparticles in vitro and in vivo, cell survival assay and tumor regression study were carried out using liver cancer cell lines (Huh7 and HepG2) and their xenografts. Particle size of targeted nanoparticles was 429.26 ± 41.53 nm with zeta potential of ?11.2 mV. Targeted nanoparticles possessed spherical morphology and high encapsulation efficiency (87.53 ± 5.9 %). The accumulation of targeted nanoparticles depends on dual effects of passive and active targeting. Drug-loaded nanoparticles showed cytotoxicity on the tumor cells in vitro and in vivo. Targeted nanoparticles resulted in significant improvement in therapeutic response through selectively eliminating CD133 positive subpopulation. These results suggested that the novel nanoparticles could be a promising candidate with excellent therapeutic efficacy for targeting liver CSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号