首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel kind of hybrid nanospheres made of Fe3O4 and ferrocenyl-CuPc (FCP) was prepared via effective solvothermal method and performed microwave absorptivity only in Ku-band with minimum reflection loss of −25 dB at 16.0 GHz corresponding to absorbing about 99.7% content of microwave. Scanning electron microscopy images indicated that the nanospheres with uniform particle size distribution have the average diameter of 135 nm. Due to the synergistic reaction between magnetic ferrocenyl-CuPc and Fe3O4, the hybrid nanospheres showed novel electromagnetic properties. The real part of complex permittivity of hybrid nanospheres remains stable in the range of 0.5–12.0 GHz and has a large fluctuation at 16.5 GHz. Moreover, the dielectric loss of hybrid nanospheres also appeared a sharp peak at 16.3 GHz with the value of 2.7. The specific gravity of hybrid nanospheres is about 2.08. On the basis of these results, the novel hybrids are believed to have potential applications in the microwave absorbing area in Ku-band.  相似文献   

2.
Nanocomposite films consisting of gold nanospheres or gold nanorods embedded in a silica matrix have been prepared using a hybrid deposition technique consisting of plasma-enhanced chemical vapor deposition of SiO2 and co-sputtering of gold, followed by annealing at 900 °C. Subsequent irradiation with 30 MeV heavy ions (Cu5+) was used to form gold nanorods. Linear and nonlinear optical properties of this material are closely related with the surface plasmon resonance in the visible. The nonlinear absorption coefficient (α2@532 nm) for the films containing gold nanospheres was measured by Z-scan and P-scan techniques, and it was found to be isotropic and equal to −4.8 × 10−2 cm/W. On the contrary, gold nanorods films exhibited two distinct surface plasmon resonance absorption bands giving rise to a strong anisotropic behavior, namely a polarization-dependent linear absorption and saturable absorption. Z-scan and P-scan measurements using various light polarization directions yielded nonlinear absorption coefficient (α2@532 nm) values varying from −0.9 × 10−2 cm/W up to −3.0 × 10−2 cm/W. Linearity of the P-scan method in the context of nanocomposite saturable absorption is also discussed.  相似文献   

3.
Self-assembled Sm-Co nanoparticles in the form of spherical aggregates (referred as nanospheres) with diameter ranging from 50 to 180 nm were achieved by means of polyol technique. The size distribution of the Sm-Co nanospheres can be regulated close to ∼100 nm by controlling the molar ratio of Sm:Co precursor. The spherical aggregates exhibited Sm2Co7 phase as a major constituent; while the aggregates obtained at higher Co concentration showed co-existence of Co-phase with Sm2Co7 phase. Upon annealing, the biphasic nature of nanospheres (Sm2Co7/Co) transformed into Sm2Co17 structure. By varying the Sm:Co precursor ratio from 1:5 to 1:9, the coercivity (Hc) and magnetization (Ms) values of the as-synthesized nanospheres can be tuned from 336 to 140 Oe and from 63.7 to 108 emu/g, respectively, and these values significantly improved after annealing. Maximum values of Hc (1050 Oe) at the Sm:Co molar ratio of 1:5 and Ms of 184.6 emu/g at the Sm:Co molar ratio of 1:9 were achieved in the annealed samples.  相似文献   

4.
Magnetic poly(styrene methyl methacrylate)/Fe3O4 nanospheres with ester groups were prepared by a modified one-step mini-emulsion polymerization in the presence of Fe3O4 ferrofluids. The effects of monomer dose, surfactant content, ferrofluid concentration and initiator content on the particle characteristics such as the size, morphology and magnetic properties were investigated by Fourier-transform infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis and vibrating sample magnetometer. The results indicated that magnetic nanospheres were superparamagnetic with high saturation magnetization of 51.0 emu/g and corresponding magnetite content of 61.5 wt%. Subsequently, magnetic nanospheres with carboxyl and amino groups were also obtained by hydrolysis and ammonolysis reaction. These magnetic nanospheres with multifunctional groups have biomedical applications.  相似文献   

5.
Uniform Cu2O nanospheres have been successfully synthesized by reducing CuSO4 with ascorbic acid in sucrose solution at room temperature. The diameter of the Cu2O nanospheres can be tuned from 90 to 280 nm by adding different amounts of sucrose in the solution. Furthermore, CuS hollow nanospheres with different diameters have been obtained based on the Kirkendall effect using the as-prepared Cu2O nanospheres as sacrificial templates. Cu2O/Cu7.2S4 core/shell nanospheres and Cu7.2S4 hollow nanospheres are obtained as the intermediate products at different stages of the conversion process. Through the post-treatment of sodium citrate solution, Cu7.2S4 hollow nanospheres can be changed into CuS hollow nanospheres. The products are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and field-emission scanning electron microscopy (FESEM). Optical properties of the products have also been studied.  相似文献   

6.
The hierarchically structured mesoporous LiMn2O4 (LMO) nanospheres were synthesized using a template-free self-assembly process that was coupled with ultrasound (U). The ultrasound technique suggested here is very powerful for controlling an ordered nanostructure and improving crystallinity with large single-crystalline domains. Owing to the hierarchical mesoporous structure and high crystallinity, U-LMO provides an excellent rate capability and cycle stability with a capacity retention of more than 98% up to 50 cycles at a 0.2 C rate. Here, we demonstrate that mesoporous U-LMO nanospheres were fabricated to enhance the electrochemical performance and protect it from structurally significant collapsing because of high crystallinity.  相似文献   

7.
This study reports on the preparation, characterization and in vitro toxicity test of a new nano-drug delivery system (NDDS) based on bovine serum albumin (BSA) nanospheres which incorporates surface-functionalized magnetic nanoparticles (MNP) and/or the silicon(IV) phthalocyanine (NzPc). The new NDDS was engineered for use in photodynamic therapy (PDT) combined with hyperthermia (HPT) to address cancer treatment. The BSA-based nanospheres, hosting NzPc, MNP or both (NzPc and MNP), present spherical shape with hydrodynamic average diameter values ranging from 170 to 450 nm and zeta potential of around −23 mV. No difference on the fluorescence spectrum of the encapsulated NzPc was found regardless of the presence of MNP. Time-dependent fluorescence measurements of the encapsulated NzPc revealed a bi-exponential decay for samples incorporating only NzPc and NzPc plus MNP, in the time window ranging from 1.70 to 5.20 ns. The in vitro assay, using human fibroblasts, revealed no cytotoxic effect in all samples investigated, demonstrating the potential of the tested system as a synergistic NDDS.  相似文献   

8.
Periodic Au nanoparticle arrays were fabricated on silica substrates using nanosphere lithography. The identical single-layer masks were prepared by self-assembly of polystyrene nanospheres with radius R = 350 nm. The structural characterization of nanosphere masks and periodic particle arrays was investigated by atomic force microscopy. The nonlinear optical properties of the Au nanoparticle arrays were determined using a single beam z-scan method at a wavelength of 532 nm with laser duration of 55 ps. The results show that periodic Au nanoparticle arrays exhibit a fast third-order nonlinear optical response with the nonlinear refractive index and nonlinear absorption coefficient being n2 = 6.09 × 10−6 cm2/kW and β = −1.87 × 10−6 m/W, respectively.  相似文献   

9.
Zinc blende (ZB) CdSe hollow nanospheres were solvothermally synthesized from the reaction of Cd(NO3)2·4H2O with a homogeneously secondary Se source, which was first prepared by dissolving Se powder in the mixture of ethanol and oleic acid at 205 °C. As Se power directly reacted with Cd(NO3)2·4H2O in the above mixed solvents, wurtzite (W) CdSe solid nanoparticles were produced. Time-dependent experiments suggested that the formation of CdSe hollow nanospheres was attributed to an inside-out Ostwald ripening process. The influences of reaction time, temperature and ethanol/oleic acid volume ratio on the morphology, phase and size of the hollow nanospheres were also studied. Infrared (IR) spectroscopy investigations revealed that oleic acid with long alkene chains behaved as a reducing agent to reduce Se powder to Se2− in the synthesis. Photoluminescence (PL) measurements showed that the ZB CdSe hollow nanospheres presented an obvious blue-shifted emission by 42 nm, and the W CdSe solid nanoparticles exhibited a band gap emission of bulk counterpart.  相似文献   

10.
Present paper reports the preparation and characterization of nanorods and mixed shaped (nanospheres/nanocubes) copper ferrite for liquefied petroleum gas (LPG) sensing at room temperature. The structural, surface morphological, optical, electrical as well as LPG sensing properties of the copper ferrite were investigated. Single phase spinel structure of the CuFe2O4 was confirmed by XRD data. The minimum crystallite size of copper ferrite was found 25 nm. The stoichiometry was confirmed by elemental analysis and it revealed the presence of oxygen, iron and copper elements with 21.91, 12.39 and 65.70 atomic weight percentages in copper ferrite nanorods. The band gap of copper ferrite was 3.09 and 2.81 eV, respectively for nanospheres/nanocubes and nanorods. The sensing films were made by using screen printing technology and investigated with the exposure of LPG. Our results show that the mixed shaped CuFe2O4 had an improved sensing performance over that of the CuFe2O4 nanorods, of which a possible sensing mechanism related to a surface reaction process was discussed. Sensor based on mixed shaped copper ferrite is 92% reproducible after one month. The role of PEG in the synthesis for obtaining nanospheres/nanocubes has also been demonstrated.  相似文献   

11.
Novel dual-functional nanospheres composed of Fe3O4 nanoparticles embedded in a thermo-sensitive polymer were synthesized by emulsifier-free emulsion polymerization. The Fe3O4 nanoparticles were prepared by chemical precipitation. The surface of these particles was modified by oleic acid to achieve stability against agglomeration. These stable particles were then polymerized using N-isopropylacrylamide as the main monomer, divinylbenzene as the crosslinker and potassium persulfate as the initiator. The nanospheres were characterized by Fourier-transform infrared spectrum, transmission electron microscopy, thermogravimetric analysis, vibrating sample magnetometer and dynamic light scattering. The results show that the lower critical solution temperature of thermo-sensitive magnetic immunomicrospheres was between 40 and 45 °C.  相似文献   

12.
TiO2 micro/nanospheres were synthesized by a combination process contains hydrolysis of titanium tetra-n-butyl in mixed solution of anhydrous ethanol/ammonia and the subsequent calcination under 550 °C for 7 h. The pH values of the mixed solution were tuned to be 10.4, 11.0 and 11.6, respectively, by adding different amounts of ammonia. Scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to characterize the morphologies and the crystallinity. X-ray diffraction (XRD) patterns indicated that pH value of the precursors has an important effect on the crystal phase composition. UV-vis diffuse reflectance spectrum was applied to characterize the optical properties of samples. Degradation of methylene blue under the irradiation of 300 W Hg lamp confirmed the enhanced photocatalytic activity of TiO2 micro/nanospheres. In addition, the formation mechanism was proposed.  相似文献   

13.
In this paper, we report a new route to synthesize novel magnetic hollow silica nanospheres (MHSNs) using polystyrene particles as sacrificial templates, and TEOS and Fe3O4 as precursors. TEM, EDS, XRD, and SQUID were applied to characterize MHSNs. TEM and EDS results show that the MHSNs consist of about 200 nm of hollow cores and ∼35 nm shells with ∼10 nm of Fe3O4 nanoparticles embedded. The polystyrene beads were successfully removed by immersing the as-prepared silica nanocomposite in a toluene solution. XRD results demonstrate that the Fe3O4 magnetic nanoparticles still keep spinel structure even heated at low temperature. The surface status of the polystyrene beads and Fe3O4 nanoparticles has an important effect on the formation of the MHSNs. The MHSNs present a superparamagnetism at room temperature by SQUID measurement. The MHSNs have potential applications in biosystem and nanomedicine.  相似文献   

14.
Highly ordered CuInSe2 films with hollow nanocones were fabricated by electron beam evaporation and nanospheres lithograph. From the AFM analyses, polystyrene nanospheres with diameter of 220 nm are assembled regularly on glass substrates. After reaction ion etching under different powers and residues removal, different and new surface morphologies of substrates have been obtained, such as smooth nanocones and hollow nanocones. The diffuse reflection spectra demonstrate that films on the substrates with periodic nanopatterned structure have less reflection over wavelengths ranged from 200 nm to 2500 nm due to light trapping. Especially, reflection for hollow nanocone arrays has the larger suppression value than nanocone-patterned films, which proves that surface pattern of hollow nanocones has better anti-reflection effect. Furthermore, while hollow depth increases from 6 nm to 9 nm, its optical antireflective effect becomes remarkable. These results could yield new options for solar-cell design with higher energy conversion efficiency.  相似文献   

15.
Gold-coated nanoparticles of Fe20Ni80 (permalloy) have been synthesized by a microemulsion process. The as-prepared samples consist of ∼5 nm diameter particles of amorphous Fe20Ni80 that are likely encapsulated in B2O3. One or more Fe20Ni80@B2O3 particles are subsequently encapsulated in 8-20 nm gold nanospheres, as determined by TEM and X-ray powder diffraction (XRD) line broadening. The gold shells were found to be under expansive strain. Magnetic data confirm the existence of a superparamagnetic phase with a blocking temperature, TB, of ∼33 K. The saturation magnetization, MS, of the as-prepared, Au-coated sample is ∼65 emu g−1 at 5 K and ∼16 emu g−1 at 300 K. The coercivity, HC, is ∼280 Oe at 5 K.  相似文献   

16.
Monodisperse Mn-Zn ferrite (Mn1−xZnxFe2O4) nanospheres have been prepared via a simple solvothermal method. The as-synthesized samples were characterized in detail by X-ray diffraction pattern (XRD), transmission electron microscope (TEM), high-solution transmission electron microscope (HRTEM), select area electron diffraction pattern (SAED), scanning electron microscope (SEM), and vibrating sample magnetometer (VSM). The results show that a large number of the high-purity Mn1−xZnxFe2O4 nanocrystallites were synthesized and these nanocrystallites oriented aggregated to nanospheres. The dependence of magnetic properties of Mn1−xZnxFe2O4 nanospheres on the composition content x of Zn was studied. The maximum saturation magnetization value of the as-prepared sample (Mn0.6Zn0.4Fe2O4) reached 52.4 emu g−1.  相似文献   

17.
Tris(8-quinolinolato)aluminum(III) (Alq3) shows electronic absorption bands at 378, 360 (in a 1:1 mixed solvent of methanol and ethanol (ME) at 77 K), 334, 316, 300, 263, 255.8, and 233 nm in ethanol at room temperature. According to the polarized fluorescence excitation spectrum together with MO calculations, for instance, the 360 nm band is assigned to an LL CT transition (an intramolecular charge transfer transition between two ligands), and the 378 nm band to an LM/ML CT one (an intramolecular charge transfer transition between ligand and metal). Alq3 shows a broad fluorescence band peaking at around 478 nm in the ME matrix at 77 K. The emission spectrum measured with a phosphoroscope has two emission bands at 567 and 478 nm. The 567 nm band accompanies vibronic bands at 578 and 605 nm, being safely assigned to a phosphorescence of Alq3. The lifetimes of the 478 and 567 nm bands are both 5.4 ms. The lifetime of the 478 nm band together with the band position and its band shape indicate that this band can be assigned to a delayed fluorescence.  相似文献   

18.
Yuh Ming Hsu  Chung Cheng Chang 《Optik》2011,122(19):1747-1752
This study elucidated the frequency characteristics of series photodetector frequency circuit system for detection of DNA probe ET996 marked with fluorescence dye Cy5. We developed 48 MHz series photodetector frequency circuit system with good sensitivity for fluorescence detection. In accordance with the theory of series photodetector frequency circuit system, the frequency sensitivity can be improved by adjusting circuit parameters such as A (tan θ), Cq, C0, and Cp. In this research of A adjustment, the capacitance parameter Cm of 48 MHz series photodetector frequency circuit system was adjusted to improve the frequency sensitivity for detection of fluorescence dye concentration; moreover, the bias of photodetector was also adjusted to improve the frequency sensitivity. In the optimal conditions of capacitance match and photodetector bias, the detection limit of ET996-Cy5 fluorescence dye concentration 2 pmol/L can be measured by 48 MHz sensor system. The results of fluorescence experiment also demonstrated that the frequency shift of 48 MHz sensor system was linearly related to the logarithm of fluorescence dye concentration from 200 nmol/L to 2 pmol/L. The frequency method can be applied simply and the detection limit of ET996-Cy5 fluorescence dye concentration was lower than the conventional fluorescence technique by 2 orders.  相似文献   

19.
Laser induced fluorescence spectra of HoS have been obtained using a Broida oven and a ring dye laser. Dispersed fluorescence spectra showed transitions from a common upper state, A[14.79]8.5 to the v = 0 and 1 vibrational levels of three low lying states, labelled X8.5, W[0.25]7.5 and V[0.98]7.5 (the states are labelled [10−3T0]Ω according to their energy and Ω assignment). High resolution excitation spectra were obtained for all six transitions and a rotational analysis yielded the following principal constants, in cm−1, for the X, W and V states, respectively: T0 = 0, 251.8713(31), 980.6969(37); Be = 0.121903(42), 0.121729(37), 0.122561(34); ΔG1/2 = 463.8811(46), 462.9411(45), 461.2084(127). For the A state, T0 = 14794.6987(28) cm−1 and B0 = 0.112596(29) cm−1. The three low lying states are shown to arise from the Ho2+[4f10(5I8)6s]S2− configuration in accord with Ligand Field Theory predictions. The atomic origin of each of the three low lying electronic states was determined from the observed resolved hyperfine structure.  相似文献   

20.
In this article, the 1.5 μm emission spectra corresponding to the 4I13/24I15/2 transition of Er3+ in tellurite glass are studied within the temperature from 8 to 300 K. The emission spectra of Er3+: 4I13/24I15/2 transition are also analyzed using a peak-fit routine, and an equivalent four-level system is proposed to estimate the stark splitting for the 4I15/2 and 4I13/2 levels of Er3+ in the tellurite glass. The results indicate that the 4I13/24I15/2 emission of Er3+ can exhibit a considerable broadening due to a significant enhance the peak a′, and b′ change, respectively, and the peaks of which are located at about 1507 and 1556 nm. A detailed study of temperature-dependent 1.5 μm emission spectra involving the change of the corresponding sub-bands shows that as the temperature decreases from 300 to 8 K, its line-shape becomes sharper and more intense (the full-width at half-maximum decreases from 59 to 38 nm). Temperature-dependent fluorescence intensities and the experimentally determined lifetimes are investigated; the results show that a decrease behavior of fluorescence intensities and lifetimes are observed for temperature from 8 to 300 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号