首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycrystalline binary rare earth intermetallic compound DySi is found to be dimorphic at room temperature (orthorhombic FeB type, space group Pnma, No. 62 and CrB type, space group Cmcm, No. 63). This compound exhibits interesting magnetic properties including an antiferromagnetic transition at ∼38 K (TN) and a low-temperature field-induced transition in a critical field of 65 kOe, at 5 K. The values of magnetic entropy change and adiabatic temperature change near the magnetic transition in DySi have been estimated using the heat capacity data obtained in different applied fields. Negative magnetocaloric effect is observed at temperatures close to and below TN, in fields up to 50 kOe.  相似文献   

2.
Magnetic properties and magnetocaloric effects (MCEs) of the Dy3Co compound are studied. Two successive magnetic transitions: the antiferromagnetic (AFM)-to-AFM transition at T AF =29 K and the AFM-to-paramagnetic (PM) transition with increasing temperature at the Néel temperature T N =44 K are observed. Dy3Co undergoes a field-induced metamagnetic transition from the AFM to the ferromagnetic (FM) state below T N , giving rise to a large MCE. The maximal value of magnetic entropy change ΔS m is −13.9 J/kg K with a refrigerant capacity (RC) of 498 J/kg around T N for a field change of 0–5 T. A sign change of MCE in Dy3Co with magnetic field and temperature is observed near the critical field where the metamagnetic transition occurs.  相似文献   

3.
We investigated magnetocaloric effect in La0.45Pr0.25Ca0.3MnO3 by direct methods (changes in temperature and latent heat) and indirect method (magnetization isotherms). This compound undergoes a first-order paramagnetic to ferromagnetic transition with TC=200 K upon cooling. The paramagnetic phase becomes unstable and it transforms into a ferromagnetic phase under the application of magnetic field, which results in a field-induced metamagnetic transition (FIMMT). The FIMMT is accompanied by release of latent heat and temperature of the sample as evidenced from differential scanning calorimetry and thermal analysis experiments. A large magnetic entropy change of ΔSm=−7.2 J kg−1 K−1 at T=212.5 K and refrigeration capacity of 228 J kg−1 are found for a field change of ΔH=5 T. It is suggested that destruction of magnetic polarons and growth of ferromagnetic phase accompanied by a lattice volume change with increasing magnetic field is responsible for the large magnetocaloric effect in this compound.  相似文献   

4.
In order to study the mechanism behind the phase separation scenario in the Sm0.15Ca0.85MnO3 compound, magnetization and resistivity measurements have been carried out in pulsed magnetic fields up to 50 T at temperatures 4.2 K<T<200 K. It is found that external magnetic field causes a collapse of a C-type AFM (P21/m) phase resulting in field-induced insulator-metal transition, which is irreversible below T1=75 K. In zero field the content of a G-type phase in the mixed C-G state can vary from 10 to 17% at T=10 K. A set of metastable states with different volume ratios of G-type to C-type phases is observed below T1 depending on the history of the sample. The obtained results indicate that the phase separation plays a dominant role for the electric and the magnetic properties of this material.  相似文献   

5.
Magnetic phase transitions in rare earth intermetallic compound Nd7Rh3 have been investigated using a single crystal. Measurement results of magnetization, magnetic susceptibility, specific heat, and electrical resistivity reveal that Nd7Rh3 has two magnetic phase transitions at TN=34 K, Tt2=9.1 K and a change of the magnetic feature at Tt1=6.8 K in the absence of an external magnetic field. Antiferromagnetic orderings exist in all the three magnetic states; a large magnetic anisotropy between the c-axis and the c-plane is observed. In the magnetic phase below Tt2, an irreversible field-induced magnetic phase transition takes place in the c-plane; after removing external magnetic field, a coexistence state of ferro- and antiferromagnetic ordering or a ferrimagnetic state having a remanent magnetization MR is stabilized. The MR decays to a certain value for several hours after the first process; a magnetic field cooling effect was also observed in the c-plane below Tt2. In the antiferromagentic state above Tt2, the irreversibility disappears and an ordinary antiferromagnetic state takes place. As the origin of this phenomenon, a kind of martensitic structural transition that is observed in Gd5Ge4 can be considered.  相似文献   

6.
Magnetic properties and magnetic entropy change ΔS were investigated in Heusler alloy Ni43Mn43Co3Sn11. With decreasing temperature this alloy undergoes a martensitic structural transition at TM=188 K. The incorporation of Co atoms enhances ferromagnetic exchange for parent phases. Austenitic phase with cubic structure shows strong ferromagnetic behaviors with Curie temperature TCA at 346 K, while martensitic phase shows weak ferromagnetic properties. An external magnetic field can shift TM to a lower temperature at a rate of 4.4 K/T, and a field-induced structural transition from martensitic to austenitic state takes place at temperatures near but below TM. As a result, a great magnetic entropy change with positive sign appears. The size of ΔS reaches 33 J/kg K under 5 T magnetic field. More important is that the ΔS displays a table-like peak under 5 T, which is favorable for Ericsson-type refrigerators.  相似文献   

7.
We report the magnetocaloric effect in the metamagnetic compound Gd2In obtained from magnetization measurement. Gd2In was previously reported to have two magnetic transitions: (i) a paramagnetic to ferromagnetic transition below 190 K and (ii) a ferromagnetic to an antiferromagnetic state below 105 K. The low temperature antiferromagnetic state is unstable under an applied magnetic field and undergoes metamagnetic transition to a ferromagnetic like state. We observe conventional positive magnetocaloric effect (the magnetic entropy change, ΔSM<0) around 190 K at all applied fields. The magnetocaloric effect is found to be inverse (negative) at low fields around 105 K (ΔSM>0), however it turns positive at higher fields (ΔSM<0). The observed anomaly is found to be related to the field induced transition which drives the system from an antiferromagnetic to a ferromagnetic state.  相似文献   

8.
9.
Magnetic properties of rare-earth intermetallics RE2Ni7 (RE=Dy, Ho) are reported. Both the samples undergo two successive magnetic transitions at Th (paramagnetic to ferromagnetic) and Tl (spin reorientation) below 100 K. The transitions are found to be second order in nature as evident from the Arrot plot analysis. Large reversible magnetocaloric effect (MCE) was observed at low temperature in the studied samples. The maximum value of the magnetic entropy change in Ho2Ni7 is found to be −12.5 J/kg K (for 0 to 50 kOe of field change) around 25 K with a high relative cooling power (RCP) of 534 J/kg. The Dy counterpart also shows moderately large values of MCE (−7.3 J/kg K) and RCP (475 J/kg) around the magnetic transition region for similar change in the magnetic field. RE2Ni7 compounds can be promising materials for magnetic refrigeration in the temperature range of helium and hydrogen liquefaction.  相似文献   

10.
The influence of partial substitution of La by Dy on the magnetocaloric response of (La1−xDyx)0.67Ca0.33Mn0.9V0.1O3, where x=0.03, 0.15 and 0.25 is studied. Rietveld refinement of X-ray diffraction pattern using GSAS method shows that the compounds adopt the orthorhombic structure with Pnma space group. The systematic change in lattice parameters and magnetic phase transition indicates the substitution effect of Dy. From the magnetization isotherms at different temperatures, magnetic entropy change close to their respective transition temperatures (TC) has been evaluated. The maximum value of entropy change near TC is found to be about 4.8 J/kg K at 187.5 K for LCMVDy0.03, 2.45 J/kg K at 107.5 K for LCMVDy0.15 and 2.15 J/kg K at 92.5 K for LCMVDy0.25 at 4 T. Dy addition produces a reduction in TC and in magnitude of the magnetic entropy change. Even though the entropy change decreases with increasing Dy substitution the refrigerant temperature range, ΔT, is found to be 10 K for LCMVDy0.03, 31 K for LCMVDy0.15 and 35 K for LCMVDy0.25 compounds [90%] at 4 T. The field dependence of the magnetic entropy change is also analyzed showing the power law dependence, ΔSMHn where n=0.75(2) for LCMVDy0.03, n=0.80(4) for LCMVDy0.15 and n=0.92(8) for LCMVDy0.25 compounds at their respective transition temperatures. The relative cooling power and its field dependance are also analyzed.  相似文献   

11.
The La0.67Sr0.33MnO3 composition prepared by sol-gel synthesis was studied by dc magnetization measurements. A large magnetocaloric effect was inferred over a wide range of temperature around the second-order paramagnetic-ferromagnetic transition. The change of magnetic entropy increases monotonically with increasing magnetic field and reaches the value of 5.15 J/kg K at 370 K for Δμ0H=5 T. The corresponding adiabatic temperature change is 3.3 K. The changes in magnetic entropy and the adiabatic temperature are also significant at moderate magnetic fields. The magnetic field induced change of the specific heat varies with temperature and has maximum variation near the paramagnetic-ferromagnetic transition. The obtained results show that La0.67Sr0.33MnO3 could be considered as a potential candidate for magnetic refrigeration applications above room temperature.  相似文献   

12.
Melt spun Ni50−xMn37+xIn13 (2≤x≤5) ribbons were investigated for the structure, microstructure, magneto-structural transitions and inverse magnetocaloric effect (IMCE) associated with the first-order martensitic phase transition. The influence of excess Mn in Ni site (or Ni/Mn content) on the martensite transition and the associated magnetic and magnetocaloric properties are discussed. It was found that with the increase in Mn content, the martensitic transition shifted from 325 to 240 K as x is varied from 2 to 4, and the austenite phase was stabilized at room temperature. The x=5 ribbon did not show the martensitic transition. For the x=3 ribbon, the structural and magnetic transitions are close together unlike in the x=4 ribbon in which they are far (∼60 K) apart. The zero field cooled and field cooled curves support the presence of exchange bias blocking temperature due to antiferromagnetic interactions in the ribbons. A large change in the magnetization between the martensite and austenite phases was observed for a small variation in the Ni/Mn content, which resulted in large IMCE. A large positive magnetic entropy change (ΔSM) of 32 J/kg K at room temperature (∼ 300 K) for a field change of 5 T with a net refrigeration capacity of 64 J/kg was obtained in the Ni47Mn40In13 ribbon.  相似文献   

13.
The influence of monovalent doping on the magnetocaloric effect (MCE) and refrigerant capacity or relative cooling power (RCP) of Pr0.5Sr0.3M0.2MnO3 (M=Na, Li, K and Ag) materials has been investigated. A large magnetocaloric effect was inferred over a wide range of temperature around the second order paramagnetic–ferromagnetic transition. The maximum magnetic entropy changes (ΔSM) reached 1.8, 2.2, 1.6 and 2.1 J/kg K and the relative cooling power (RCP) approached 58.9, 59.3, 69.6 and 54.6 J/kg for Na, Li, K and Ag doped materials in the magnetic change of 15 kOe, respectively. According to the results determined by the Maxwell relation, the magnetic entropy change fits well with the Landau theory of phase transition above TC for Pr0.5Sr0.3Li0.2MnO3. The large magnetic entropy change induced by low magnetic field suggested that these materials are beneficial for practical applications.  相似文献   

14.
In the compound MnBi, a first-order transition from the paramagnetic to the ferromagnetic state can be triggered by an applied magnetic field and the Curie temperature increases nearly linearly with an increase in magnetic field by ∼2 K/T. Under a field of 10 T, TC increases by 20 and 22 K during heating and cooling, respectively. Under certain conditions a reversible magnetic field or temperature induced transition between the paramagnetic and ferromagnetic states can occur. A magnetic and crystallographic H-T phase diagram for MnBi is given. Magnetic properties of MnBi compound aligned in a Bi matrix have been investigated. In the low temperature phase MnBi, a spin-reorientation takes place during which the magnetic moments rotate from being parallel to the c-axis towards the basal plane at ∼90 K. A measuring Dc magnetic field applied parallel to the c-axis of MnBi suppresses partly the spin-reorientation transition. Interestingly, the fabricated magnetic field increases the temperature of spin-reorientation transition Ts and the change in magnetization for MnBi. For the sample solidified under 0.5 T, the change in magnetization is ∼70% and Ts is ∼91 K.  相似文献   

15.
The effects of K doping in the A-site on the structural, magnetic and magnetocaloric properties in La0.65Ca0.35−xKxMnO3 (0?x?0.2) powder samples have been investigated. Our samples have been synthesized using the solid-state reaction method at high temperature. The parent compound La0.65Ca0.35MnO3 is an orthorhombic (Pbnm space group) ferromagnet with a Curie temperature TC of 248 K. X-ray diffraction analysis using the Rietveld refinement show that all our synthesized samples are single phase and crystallize in the orthorhombic structure with Pbnm space group for x?0.1 and in the rhombohedral system with R3¯c space group for x=0.2 while La0.65Ca0.2K0.15MnO3 sample exhibits both phases with different proportions. Magnetization measurements versus temperature in a magnetic applied field of 50 mT indicate that all our investigated samples display a paramagnetic-ferromagnetic transition with decreasing temperature. Potassium doping leads to an enhancement in the strength of the ferromagnetic double-exchange interaction between Mn ions, and makes the system ferromagnetic at room temperature. Arrott plots show that all our samples exhibit a second-order magnetic-phase transition. The value of the critical exponent, associated with the spontaneous magnetization, decreases from 0.37 for x=0.05 to 0.3 for x=0.2. A large magnetocaloric effect (MCE) has been observed in all samples, the value of the maximum entropy change, |ΔSm|max, increases from 1.8 J/kg K for x=0.05 to 3.18 J/kg K for x=0.2 under a magnetic field change of 2 T. For x=0.15, the temperature dependence of |ΔSm| presents two maxima which may arise from structural inhomogeneity.  相似文献   

16.
Magnetic and heat capacity measurements have been carried out on the polycrystalline sample of DyNi, which crystallizes in the orthorhombic FeB structure (space group Pnma). This compound is ferromagnetic with a Curie temperature of 59 K. Magnetization-field isotherms at low temperatures show a multi-step behavior characteristic of metamagnetic transitions. The magnetocaloric effect has been measured both in terms of isothermal magnetic entropy change and adiabatic temperature change for various applied magnetic fields. The maximum values of the entropy change and the temperature change are found to be 19 J kg−1 K−1 and 4.5 K, respectively, for a field of 60 kOe. The large magnetocaloric effect is attributed to the field-induced spin-flop metamagnetism occurring in this compound, which has a noncollinear magnetic structure at low fields.  相似文献   

17.
Crystal structure, magnetism and magnetocaloric properties of LaFe11.7Si1.3Ny (y=0, 1.3) compounds have been studied by X-ray diffraction and magnetic measurements. The LaFe11.7Si1.3Ny compounds present a cubic NaZn13-type structure. Insertion of 1.3 nitrogen atoms per LaFe11.7Si1.3 formula increases the lattice parameter and Curie temperature from 11.467 to 11.733 Å and from 190 to ∼230 K, respectively. Besides, the absorption of nitrogen drives drastically the magnetic transition from first to second order and accordingly strongly decreases the magnetocaloric effect compared to the parent alloy. Under an external field change of 5 T, the value of isothermal entropy change −ΔS is about 28 and 3.5 J/kg K for LaFe11.7Si1.3 and LaFe11.7Si1.3N1.3, respectively, close to their Curie temperature. However, the relative cooling power RCP(S) of the nitride is about half that of the parent alloy.  相似文献   

18.
The thermal expansion and magnetostriction of polycrystalline sample of the ErMn6Sn6 intermetallic compound with hexagonal HfFe6Ge6-type structure are investigated in the temperature range of 77 K to above 400 K. The thermal expansion measurement of the sample shows anomalous behavior around its TN=340 K. The isofield curves of volume magnetostriction also reveal anomalies at paramagnetic-antiferromagnetic and antiferromagnetic-ferrimagnetic phase transitions. In the antiferromagnetic state, the transition to ferrimagnetism can be induced by an applied magnetic field. The threshold field for the metamagnetic transition Hth increases from 0.18 T at 84 K to about 1 T around 220 K, and then decreases monotonously to TN. This behavior is well consistent with that observed earlier on magnetization curves attributed to exchange-related metamagnetic transition rather than the anisotropy-related one. Furthermore, the low Hth values suggest that the Mn-Mn coupling in ErMn6Sn6 is not so strong. The experimental results obtained are discussed in the framework of two-magnetic sublattice by bearing in mind the lattice parameter dependence of the interlayer Mn-Mn exchange interaction in this layered compound. From the temperature dependence of magnetostriction values and considering the magnetostriction relation of a hexagonal structure, we attempt to determine the signs of some of the magnetostriction constants for this compound.  相似文献   

19.
A series of R2Fe17 (R=Sm, Gd, Tb, Dy, Er) have been synthesized. The magnetocaloric effect (MCE) of these compounds has been investigated by means of magnetic measurements in the vicinity of their Curie temperature. The Curie temperature of Er2Fe17 is 294 K. The maximum magnetic entropy change of Er2Fe17 under 5 T magnetic field is ∼3.68 J/kg K. In the R2Fe17 (R=Sm, Gd, Tb, Dy, Er) system, the maximum magnetic entropy change under 1.5 T magnetic field is 1.72, 0.89, 1.32, 1.59, 1.68 J/kg K corresponding to their Curie temperature (400, 472, 415, 364, 294 K), respectively.  相似文献   

20.
《Current Applied Physics》2020,20(2):266-271
We have investigated the structural, magnetic, magnetocaloric, thermodynamic and transport properties of polycrystalline Gd3Ni2In4 compound. X-ray powder diffraction pattern shows that Gd3Ni2In4 crystallizes in hexagonal Lu3Co2In4 – type structure. Magnetization studies reveal the presence of two magnetic transitions, TN and TC at 21 K and 55.5 K, respectively. The maximal value of magnetic entropy change, -ΔSM, computed from isothermal magnetization data in a magnetic field of 9 T is 4.57 J/kg K, which is spread over a wide temperature (ΔT = 61.5 K) and hence yields a relative cooling power (RCP) of 281 J/kg. In addition, the compound shows a significant positive magnetoresistance, MR (T = 2 K) = 44% in B = 9 T. These results on Gd3Ni2In4 compound signify that such materials exhibiting successive reversible magnetic transitions may comprise a distinct class of magnetocaloric materials as they work in a wider temperature range than conventional refrigerant materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号