首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polycrystalline perovskite La0.67Ca0.33MnO3 was synthesized by a sol–gel method. Its adiabatic temperature change ΔTad induced by a magnetic field change was measured directly. At 268 K, near its Curie temperature TC, ΔTad of La0.67Ca0.33MnO3 induced by a magnetic field change of 2.02 T reaches 2.4 K. The latent heat Q and magnetic entropy change −ΔSM induced by a magnetic field change were calculated from the temperature dependence of ΔTad and zero-field heat capacity Cp. The maximum values of Q and −ΔSM in La0.67Ca0.33MnO3 induced by a magnetic field change of 2.02 T are 1.85 J g−1 and 6.9 J kg−1 K−1, respectively. The former is larger than the phase transition latent heat of heating or cooling, which is about 1.70 J g−1.  相似文献   

2.
In this work we discuss the magnetocaloric effect in metallic gadolinium. We use a model Hamiltonian of interacting 4f spins and treat the 4f spin–spin interaction both in the mean field approximation and in the Monte Carlo simulation. The calculations show that the mean field approximation yields reasonable results for the magnetocaloric potentials ΔSΔS and ΔTadΔTad but it fails in explaining the experimental data of specific heat at the magnetic ordering temperature. On the other hand, our theoretical results show that the Monte Carlo calculation describes well not only the magnetocaloric potentials ΔSΔS and ΔTadΔTad but also the specific heat capacity.  相似文献   

3.
4.
Gd5Si4 magnets have attracted much attention due to their many appealing properties such as strong ferromagnetism, magnetovolume effect, and large reversal magnetocaloric effect (MCE). However, Gd5Si4 exhibits a relatively high Curie temperature (TC ∼336 K) with a narrow refrigeration temperature span, which limits the refrigeration application at room temperature. Here we show that the TC of Gd5Si4 can be reduced to 330 K and the phase transition temperature range can be effectively expanded by applying a high pressure of 6 GPa to the sample during heat treatment. In addition, the room-temperature magnetic entropy changes are improved and the refrigeration temperature span also becomes wider, which leads to an enhanced relative cooling power (RCP) of 748 Jkg-1 under a magnetic field change of 5 T. These unique features indicate that the Gd5Si4 compound prepared under high pressure can serve as a magnetic refrigerant in a wide temperature range covering room temperature.  相似文献   

5.
We survey the magnetocaloric effect in perovskite-type oxides (including doped ABO 3-type manganese oxides, A3B2O7-type two-layered perovskite oxides, and A2B'B'O6-type ordered double-perovskite oxides). Magnetic entropy changes larger than those of gadolinium can be observed in polycrystalline La1-xCaxMnO3 and alkali-metal (Na or K) doped La0.8Ca0.2MnO3 perovskite-type manganese oxides. The large magnetic entropy change produced by an abrupt reduction of magnetization is attributed to the anomalous thermal expansion at the Curie temperature. Considerable magnetic entropy changes can also be observed in two-layered perovskites La1.6Ca1.4Mn2O7 and La2.5-xK0.5+xMn2O7+δ (0 x 0.5), and double-perovskite Ba2Fe1+xMo1-xO6 (0 ≤ x ≤ 0.3) near their respective Curie temperatures. Compared with rare earth metals and their alloys, the perovskite-type oxides are lower in cost, and they exhibit higher chemical stability and higher electrical resistivity, which together favor lower eddy-current heating. They are potential magnetic refrigerants at high temperatures, especially near room temperature.  相似文献   

6.
Transition shift can create serious timing problems for high density recording environments. However, it is possible to use techniques such as write precompensation to offset the timing error introduced if the magnitude and the behaviour of the transition shift are properly understood. This paper introduces a 3D finite element method (FEM) to analyse the transition shift in perpendicular magnetic recording (PMR) quantitatively, allowing the combinational effects of the transition shifts from non-linear transition shift (NLTS), HTS, and neighbourhood-induced transition shift (NITS) to be examined. The consideration of all contributing factors to the final written transition position is important in determining the precompensation scheme of magnetic data recording, and 3D FEM can facilitate such quantitative analysis.  相似文献   

7.
8.
E. Yüzüak  I. Dincer  Y. Elerman 《中国物理 B》2010,19(3):37502-037502
The magnetocaloric properties of the Gd 5 Ge 2.025 Si 1.925 In 0.05 compound have been studied by x-ray diffraction,magnetic and heat capacity measurements.Powder x-ray diffraction measurement shows that the compound has a dominant phase of monoclinic Gd5Ge2Si2-type structure and a small quantity of Gd 5(Ge,Si) 3-type phase at room temperature.At about 270 K,this compound shows a first order phase transition.The isothermal magnetic entropy change(△SM) is calculated from the temperature and magnetic field dependences of the magnetization and the temperature dependence of MCE in terms of adiabatic temperature change(△Tad) is calculated from the isothermal magnetic entropy change and the temperature variation in zero-field heat-capacity data.The maximum S M is 13.6 J·kg-1·K-1 and maximum △Tad is 13 K for the magnetic field change of 0-5 T.The Debye temperature(θD) of this compound is 149 K and the value of DOS at the Fermi level is 1.6 states/eV·atom from the low temperature zero-field heat-capacity data.A considerable isothermal magnetic entropy change and adiabatic temperature change under a field change of 0-5 T jointly make the Gd5Ge2.025Si1.925 In 0.05 compound an attractive candidate for a magnetic refrigerant.  相似文献   

9.
J.H. Qiu  Q. Jiang 《Solid State Communications》2009,149(37-38):1549-1552
An analytical thermodynamic theory is applied to investigate the electrocaloric effect of ferroelectric BaTiO3/SrTiO3 bilayer thin films with different orientations at room temperature. Theoretical analysis indicates that the strong electrostatic coupling between the layers results in the suppression of ferroelectricity at a critical relative thickness which occurs approximately at 50%, 23%, and 12% of SrTiO3 fraction in the (001), (110), and (111) bilayer thin films, respectively. The ferroelectric bilayer thin films are respected to have the largest electrocaloric effect at this critical relative thickness. Moreover, the electrocaloric effect strongly depends on the orientation and the (110) oriented bilayer thin films have the largest electrocaloric effect. Consequently, control of the orientation and the relative thickness of SrTiO3 layer can be used to adjust the electrocaloric effect of ferroelectric bilayer thin films, which may provide the potential for practical application in refrigeration devices.  相似文献   

10.
We theoretically discuss the influence of driving laser field on the topological nature, one of the manifestation of the electron Berry phase effect, in two-dimensional electronic systems. Adiabatic change of the laser amplitude with circular polarization alters the “order parameter”, termed the Chern number, in topological insulator with broken time-reversal symmetry, resulting in photo-induced phase transition. The finding is an optical analog of the integer quantum Hall effect, that is triggered by the laser field instead of magnetic field. This parallelism suggests the similarity of effects to electron dynamics between circularly polarized light and magnetic field.  相似文献   

11.
The magnetostriction of composite consisting of a soft matrix, non-magnetic, randomly filled by ferromagnetic particles is measured. The measured elongation on cylinder-shaped samples displays shape dependence. A model based on the demagnetizing field and the effective Young’s modulus is provided. Both calculation and measurement show a positive magnetostriction with larger values as the samples are flatter. The model is derived to have the behavior of the elongation as a function of the filling factor. An expression of the optimal filling factor, providing a maximal strain, is also expressed.  相似文献   

12.
Abstract

In this work, we have studied on double-layered perovskite (Ruddlesden–Popper) manganite structure in Pr1.75Sr1.25Mn2O7 synthesised by sol–gel method. The crystal structure of the double-layered perovskite is found as tetragonal from the X-ray diffraction analysis with I4/mmm space group. A high Curie temperature, TC = 305 K is observed from the temperature dependence of magnetisation measurement. The isothermal magnetisation curves showed that magnetic phase transition is second order due to the positive slope of the Arrott plots. Maximum magnetic entropy change (ΔSM) and adiabatic temperature change (ΔTad) values are calculated as 3.99 J kg?1 K?1 and 2.1 K under external magnetic field of 70 kOe, respectively. Since our double-layered perovskite manganite sample has desired TC value and relatively high ΔSM, it can be a potential candidate as a magnetocaloric material for room temperature magnetic cooling systems.  相似文献   

13.
14.
We present study of the anisotropic magnetocaloric effect in DyNiAl. This compound crystallizes in the hexagonal ZrNiAl-type structure, orders magnetically below and undergoes a further magnetic phase transition at . The Dy-moments are aligned ferromagnetically along the hexagonal c-axis below TC, the additional antiferromagnetic component develops within the basal plane below T1. The magnetocaloric effect was evaluated from the magnetization measurements with field applied along the c-axis and perpendicular to it. Our data reveal a strong anisotropy of the magnetocaloric effect. The large effect occurs for field applied along the c-axis whereas the entropy change is small for the perpendicular field direction.  相似文献   

15.
The magnetic properties and magnetocaloric effect of an antiferromagnetic/ferromagnetic(AFM/FM)BiFeO_3/Co bilayer with mixed-spin(5/2,3/2) have been studied based on Monte Carlo simulation.The magnetization, susceptibility, and critical temperature are investigated under various exchange couplings and an external magnetic field. In particular, the influence of exchange couplings and an external magnetic field on the magnetic entropy change, adiabatic temperature change, and the relative cooling power(RCP) are studied. The simulation results indicated that the decrease of the exchange coupling and the increase of external magnetic fields can cause an increase of magnetic entropy change, adiabatic temperature change, and RCP. In addition, the hysteresis loops of the system are presented for different exchange couplings and temperatures.  相似文献   

16.
The magnetocaloric effect (MCE) has been measured by direct method in La0.8Ag0.15MnO3 and La0.85Ag0.15MnO3 before and after coating of Fe–Co layer on the surfaces of manganites. An evaporated film thickness has been 500 nm. The measurements have shown the MCE to be increased by 7%–8% under 26 kOe after Fe–Co coating on the flat surfaces.  相似文献   

17.
The present work is devoted to a review of the phenomenological model proposed by Mahmoud Aly Hamad (M. Aly Hamad, Phase Transitions 85 (2012) 106–112) to predict the magnetocaloric effect in ferromagnetic material from the only measure of its magnetization as a function of temperature under an applied magnetic field. We questioned the reliability of that model. Based on some experimental data available in the literature, we have shown that, contrary to what is expected, the prediction of the magnetocaloric effect by this model is poor.  相似文献   

18.
The magnetic properties and magnetocaloric effect(MCE) in EuTi_(1-x)Co_xO_3(x = 0, 0.025, 0.05, 0.075, 0.1) compounds have been investigated. When the Ti~(4+) ions were substituted by Co2+ions, the delicate balance was changed between antiferromagnetic(AFM) and ferromagnetic(FM) phases in the EuTiO_3 compound. In EuTi_(1-x)Co_xO_3 system, a giant reversible MCE and large refrigerant capacity(RC) were observed without hysteresis. The values of -?S_M~(max) were evaluated to be around 10 J·kg~(-1)·K~(-1) for EuTi_(0.95)Co_(0.05)O_3 under a magnetic field change of 10 kOe. The giant reversible MCE and large RC suggests that EuTi_(1-x)Co_xO_3 series could be considered as good candidate materials for low-temperature and low-field magnetic refrigerant.  相似文献   

19.
The Curie temperature, TC, is the temperature above which a material loses its long-range ferromagnetic order. Considering the equation of state of a ferromagnet in the mean-field approximation it has been shown theoretically that the value of the demagnetization factor N has a significant influence on the perceived location of TC on the temperature scale. A series of precise measurements of magnetization using two differently shaped single crystals of high-purity gadolinium was carried out to prove this result experimentally and develop a procedure leading to the ‘true’ value of TC.  相似文献   

20.
A newly designed experimental device for direct measurement of the magnetocaloric effect has been assembled and tested. Details about calibration and preliminary measurements performed on Gd as a standard reference material are reported together with results concerning the magnetocaloric effect of three different Gd eutectic compositions (Gd-Gd7Pd3, Gd-GdZn, Gd-GdCd).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号