首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Magnetite nanoparticles are found to assemble into randomly dispersed loose nanoscale spheres with diameters ∼300 nm in ethylene glycol in the presence of polyethylene and a small quantity of polyethyleneimine. Modern analysis methods are employed to provide structure information of the magnetic loose spheres. The ferromagnetic saturation magnetization is ∼80.0 emu g−1, and the coercive force is 209 Oe. The microwave electromagnetic parameters are measured by a vector network analyzer. The synthesized loose spheres exhibit novel microwave properties compared with the conventional Fe3O4 nanoparticles. An additional microwave loss peak appears in the Ku band, which is attributed to the loose structure.  相似文献   

2.
The microwave permeability dispersion behaviors and microwave-absorbing properties for different shapes of Sendust particles prepared by vibrating ball milling at 35 vol% in paraffin wax matrix have been investigated. The dispersion spectrum of permeability was calculated by the Landau-Lifshitz-Gilbert equation and Bruggeman’s effective medium theory. The calculated results are in agreement with the experiment data. According to the calculation results, the value of (μ0−1)fr (μ0 is static permeability, and fr is resonance frequency) for flake particle with larger aspect ratio reached 59.1 GHz and exceeded the Snoek’s limit. Considering the quarter-wavelength model and transmission line theory, the microwave absorption peak was discussed. At the frequency range, the flake particle with larger aspect ratio can make a thinner absorber. It provides a way to decrease layer thickness of magnetic absorber.  相似文献   

3.
Magnetic hollow spheres of low density were prepared by plating Fe3O4 magnetic films on hollow glass spheres using ferrite plating. The complex permeability and permittivity of spheres–wax composites were measured in the range of 2–18 GHz. The complex permeability and permittivity increased, and the dielectric and magnetic losses were improved as the volume fraction of the magnetic spheres in the composites increased from 60% to 80%, which also resulted in a great improvement of microwave absorption properties. For composites with volume fraction 80%, its magnetic resonance frequency was at about 13 GHz and it appeared three loss peaks in the calculated reflection loss curves; the bandwidth less than −10 dB was almost 4 GHz which was just in the Ku-band frequencies (12–18 GHz) and a minimum reflection loss of −20 dB was obtained when the thickness was 2.6 mm; the microwave absorbing properties were mainly due to the magnetic loss. The results showed that the magnetic spheres composites were good and light microwave absorbers in the Ku-band frequencies.  相似文献   

4.
The magnetic and microwave properties of Ni nanospheres and conical nanorods have been investigated through experimental and theoretical methods. Ni nanospheres and conical nanorods have the same crystal structure and close particle size, whereas the remanence ratio, coercivity, dynamic permeability and microwave absorbing properties show great dependence on their shape. Ni conical nanorods self-assembled into urchin-like structure have higher natural resonance frequency due to the large shape anisotropy compared to the Ni nanospheres. Supposing random spatial distribution of magnetic easy axes and using the Landau-Lifshitz-Gilbert equation associated with the Bruggeman's effective medium theory, we simulate the complex permeability of Ni nanoparticles, which agrees well with the experimental results.  相似文献   

5.
The novel nano-scale Fe-phthalocyanine oligomer/Fe3O4 hybrid microspheres were synthesized from bis-phthalonitrile and FeCl3·6H2O through a simple solvent-thermal route. The morphology and structure of the hybrid microspheres were characterized by FTIR, XRD, SEM and TEM. These results showed that the hybrids were monodispersed solid microspheres and the morphology can be adjusted by controlling the addition of bis-phthalonitrile. On the basis of these results, the formation process was discussed. Magnetization measurement indicated that saturation magnetizations decreased linearly with increasing the addition of bis-phthalonitrile, while coercivities increased. The microwave absorption properties were measured by a vector network analyzer. The dielectric loss of the hybrid microspheres was larger and a new magnetic loss peak appeared at high frequency. The microwave absorbing properties enhanced with increasing the addition of bis-phthalonitrile and a maximum reflection loss of −31.1 dB was obtained at 8.6 GHz with 1 g bis-phthalonitrile when the matching thickness was 3.0 mm. The novel hybrid materials are believed to have potential applications in the microwave absorbing performances.  相似文献   

6.
The complex permittivity (ε′–″), complex permeability (μ′–″) and microwave absorption properties of ferrite–polymer composites prepared with different ferrite ratios of 50%, 60%, 70% and 80% in polyurethane (PU) matrix have been investigated in X-band (8.2–12.4 GHz) frequency range. The M-type hexaferrite composition BaCo+20.9Fe+20.05Si+40.95Fe+310.1O19 was prepared by solid-state reaction technique, whereas commercial PU was used to prepare the composites. At higher GHz frequencies, ferrite's permeabilities are drastically reduced, however, the forced conversion of Fe+3 to Fe+2 ions that involves electron hopping, could have increased the dielectric losses in the chosen composition. We have measured complex permittivity and permeability using a vector network analyzer (HP/Agilent model PNA E8364B) and software module 85071. All the parameters ε′, ε″, μ′ and μ″ are found to increase with increased ferrite contents. Measured values of these parameters were used to determine the reflection loss at various sample thicknesses, based on a model of a single-layered plane wave absorber backed by a perfect conductor. The composite with 80% ferrite content has shown a minimum reflection loss of −24.5 dB (>99% power absorption) at 12 GHz with the −20 dB bandwidth over the extended frequency range of 11–13 GHz for an absorber thickness of 1.6 mm. The prepared composites can fruitfully be utilized for suppression of electromagnetic interference (EMI) and reduction of radar signatures (stealth technology).  相似文献   

7.
A novel kind of hybrid nanospheres made of Fe3O4 and ferrocenyl-CuPc (FCP) was prepared via effective solvothermal method and performed microwave absorptivity only in Ku-band with minimum reflection loss of −25 dB at 16.0 GHz corresponding to absorbing about 99.7% content of microwave. Scanning electron microscopy images indicated that the nanospheres with uniform particle size distribution have the average diameter of 135 nm. Due to the synergistic reaction between magnetic ferrocenyl-CuPc and Fe3O4, the hybrid nanospheres showed novel electromagnetic properties. The real part of complex permittivity of hybrid nanospheres remains stable in the range of 0.5–12.0 GHz and has a large fluctuation at 16.5 GHz. Moreover, the dielectric loss of hybrid nanospheres also appeared a sharp peak at 16.3 GHz with the value of 2.7. The specific gravity of hybrid nanospheres is about 2.08. On the basis of these results, the novel hybrids are believed to have potential applications in the microwave absorbing area in Ku-band.  相似文献   

8.
Polycrystalline samples of U-type hexaferrite series: (Ba1−3xLa2x)4Co2Fe36O60 with 0.10≤x≤0.20 in step of 0.05, are prepared by conventional solid state reaction route. Partial substitution of Ba2+ ions with La3+ ions enhances the electron hopping and reduces the magnetic interaction in the samples over the entire X-band frequencies; leading to wide band microwave absorption in all sample. Relative complex permittivity (εr=ε′−″) and permeability (μr=μ′−″) of the prepared samples were measured using Vector Network Analyzer (VNA, Agilent PNA-L N5230A) for X-band (8.2-12.4 GHz) frequency range. The maximum absorption of 99.8% was obtained for x=0.10 sample for thickness tm=1.8 mm and all sample showed absorption ≥96%. The reflection loss (RL) calculated using the measured parameter r=ε′−″ and μr=μ′−″) shows good agreement when compared with the return loss measured directly using VNA for sample x=0.20. The material can be expected to find relevance in suppression of electromagnetic interference (EMI) shielding and reduction of radar signatures.  相似文献   

9.
This paper reports that amorphous magnetic microwires(Fe79Si16B5) have been fabricated by a melt-extraction technique and have been annealed at 600°C and 750°C respectively.Differential scanning calorimeter measurements show that nanocrystalline magnetic phase(α-Fe) has been formed in the amorphous matrix when it was annealed at 600°C.Hard magnetic phase(Fe2B) was formed in the microwires annealed at 750°C,which increases the magnetic coercivity.Microwave permittivity and permeability are found to be dependent on the microstructures.The permittivity fitting results show that multi Lorentzian dispersion processes exist.For microwires annealed at 750°C,their resonance peaks due to the domain wall movements and natural resonance are found higher than those of microwires annealed at 600°C.The microwave absorption performance of microwires annealed at 600°C is found better than microwires annealed at 750°C.  相似文献   

10.
In this work carbonyl iron/La0.6Sr0.4MnO3 composites were prepared to develop super-thin microwave absorbing materials. The complex permittivity, permeability and microwave absorption properties are investigated in the frequency range of 8-12 GHz. An optimal reflection loss of −12.4 dB is reached at 10.5 GHz with a matching thickness of 0.8 mm. The thickness of carbonyl iron/La0.6Sr0.4MnO3 absorber is thinner, compared with conventional carbonyl iron powders with the same absorption properties. The bandwidth with a reflection loss exceeding −7.4 dB is obtained in the whole measured frequency range with the thickness of 0.8 mm. The excellent microwave absorption properties are attributed to a better electromagnetic matching established by the combination of the enhanced dielectric loss and nearly invariable magnetic loss with the addition of La0.6Sr0.4MnO3 nanoparticles in the composites. Our work indicates that carbonyl iron/La0.6Sr0.4MnO3 composites may have an important application in wide-band and super-thin electromagnetic absorbers in the frequency range of 8−12 GHz.  相似文献   

11.
The novel nano-scale iron phthalocyanine oligomer/Fe3O4 (FePc/Fe3O4) hybrid microspheres were synthesized from iron phthalocyanine oligomer and FeCl3·6H2O via a solvent-thermal crystallization route. The morphology and structure of the hybrid microspheres were characterized by Fourier transform infrared spectrophotometer, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. These results showed that the hybrids were monodisperse microspheres and the morphology can be adjusted by controlling pre-polymerization time. The saturation magnetization increased with increase in the pre-polymerization time, while the coercivities decreased. The FePc/Fe3O4 hybrid microspheres exhibited novel microwave electromagnetic properties: the dielectric loss was enhanced when the pre-polymerization time increased and a new microwave loss peak appeared at high frequency. The microwave absorbing properties enhanced with increase in the pre-polymerization time and a maximum reflection loss of −29.7 dB was obtained at 11.7 GHz with 6 h of pre-polymerization time when the matching thickness was 3.0 mm. The novel hybrid materials are believed to have potential applications as microwave absorbing materials.  相似文献   

12.
耿欣  何大伟  王永生  赵文  周亦康  李树磊 《中国物理 B》2015,24(2):27803-027803
In order to investigate the impedance matching properties of microwave absorbers,the ternary nanocomposites of GO/PANI/Fe3O4(GPF) are prepared via a two-step method,GO/PANI composites are synthesized by dilute polymerization in the presence of aniline monomer and GO,and GO/PANI/Fe3O4 is prepared via a co-precipitation method.The obtained nanocomposites are characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD),and Fourier transform infrared spectroscopy(FTIR),respectively.The microwave absorbability reveals enhanced microwave absorption properties compared with GO,PANI,and GO/PANI.The maximum reflection loss of GO/PANI/Fe3O4 is up to-27 dB at 14 GHz with its thickness being 2 mm,and its absorption bandwidths exceeding-10 dB are more than 11.2 GHz with its thickness values being in the range from 1.5 mm-4 mm.It provides that GO/PANI/Fe3O4 can be used as an attractive candidate for microwave absorbers.  相似文献   

13.
Electrodeposition was employed to fabricate magnetite (Fe3O4) coated carbon fibers (MCCFs). Temperature and fiber surface pretreatment had a significant influence on the composition and morphology of Fe3O4 films. Uniform and compact Fe3O4 films were fabricated at 75 °C on both nitric acid treated and untreated carbon fibers, while the films prepared at 60 °C were continuous and rough. Microwave measurements of MCCF/paraffin composites (50 wt.% of MCCFs, pretreated carbon fibers as deposition substrates) were carried out in the 2-18 GHz frequency range. MCCFs prepared at 60 °C obtained a much higher loss factor than that prepared at 75 °C. However, the calculation results of reflection loss were very abnormal that MCCFs prepared at 60 °C almost had no absorption property. While MCCFs prepared at 75 °C exhibited a good absorption property and obtained −10 dB and −20 dB refection loss in wide matching thickness ranges (1.0-6.0 mm and 1.7-6.0 mm range, respectively). A secondary attenuation peak could also be observed when the thickness of MCCF/paraffin composite exceeded 4.0 mm. The minimum reflection loss was lower.  相似文献   

14.
Full-potential linearized augmented plane wave plus local orbital method (FPLAPW + lo) calculations were performed for Fe2VAl and Fe3Al in order to investigate magnetic and optical properties and to show the origin of various optical transitions. It was found that the lattice constant and spin magnetic moments with the GGA method differ more from the respective experimental values than those calculated with the LSDA method. Furthermore, our calculated lattice constant and spin magnetic moments with the LSDA method were in overall better agreement with experiment. Our predictions agreed well with recent experimental reflectivity spectra. Meanwhile, the spectral peaks at the transitions were analyzed from the imaginary part of the dielectric function.  相似文献   

15.
Effect of 3d transition metal substitution (Co and Ni) is studied on microstructure and absorption properties of FeSiB flakes in GHz. Fe78−xMxSi9B13 (M=Co or Ni, x=0, 5, 10 and 15) nanocrystalline flakes with nanocrystal/amorphous two-phase structure were prepared by ball milling. Substitution decreases the nanocrystal size and affects microwave behavior both compositionally and structurally according to the substitution mechanism. Compositional influence is contributing to the change of intrinsic magnetization parameters; structural influence works on exchange coupling. Absorption band of Fe78Si9B13 flakes shifts towards lower frequency by the substitution, and Fe63Co15Si9B13 absorber shows promising absorption at C-band.  相似文献   

16.
Ce-substituted barium ferrite with chemical composition BaCe0.05Fe11.95O19 has been prepared by the citrate sol-gel method. The phase composition of BaCe0.05Fe11.95O19 was characterized by X-ray powder diffraction analysis (XRD). The complex permittivity and complex permeability, microwave absorption properties of the resulting powder were measured by the transmission/reflection coaxial line method in the range of 8-13 GHz. The results show that the resulting powder has a minimum reflection loss value of - 37.4 dB at 12.8 GHz with a matching thickness of 3.5 mm.  相似文献   

17.
The superparamagnetic 8-nm Fe3O4 nanoparticles were successfully prepared by chemical oxidation process. For the complex permittivity, the dual dielectric relaxation processes have been proved by two overlapped Cole–Cole semicircles, and the natural resonance frequency is 3.03 GHz for the complex permeability. The maximum reflection loss value reaches −55.5 dB at 6.11 GHz with 3.85 mm in the thickness of the absorbers for the superparamagnetic 8-nm Fe3O4 nanoparticles which is better than that of 150 nm and 30 nm Fe3O4 nanoparticles. It is believed that the superparamagnetic 8-nm Fe3O4 nanoparticles can be used as a kind of candidate for microwave absorber.  相似文献   

18.
位建强  张钊琦  韩瑞  王涛  李发伸 《中国物理 B》2012,21(3):37601-037601
The reflection properties of planar anisotropy Fe50Ni50 powder/paraffin composites have been studied in the microwave frequency range. The permeability of Fe50Ni50 powder/paraffin composites is greatly enhanced by introducing the planar anisotropy, and can be further enhanced by using a rotational orientation method. The complex permeability can be considered as the superposition of two types of magnetic resonance. The resonance peak at high frequency is attributed to the natural resonance, while the peak at low frequency is attributed to the domain-wall resonance. The simulated results of the microwave reflectivity show that the matching thickness, peak frequency, permeability, and permittivity are closely related to the quarter wavelength matching condition. The Fe50Ni50 powder/paraffin composites can be attractive candidates for thinner microwave absorbers in the L-band (1-2 GHz).  相似文献   

19.
La1−xAgxMnO3 perovskites with different doping Ag-content were prepared by the sol–gel method. The electromagnetic characteristics and microwave loss behavior of these ion-doped rare-earth manganites were studied in the 2–18 GHz frequency range. The microstructure and morphology of the samples were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. The complex permittivity spectra, the complex permeability spectra and microwave reflection loss were measured by a microwave vector network analyzer system. The XRD patterns show that the crystalline perovskite main phase ABO3 is formed and impurity phases disappear when calcined at 1100 °C, and Ag metal as an impurity phase appears when excessive Ag+ is doped. The SEM image indicates that many of the La0.85Ag0.15MnO3 particles are fiber-like or ellipsoidal. Magnetic loss and dielectric loss coexist and cooperate in microwave attenuation by moderate substitution of Ag+ for La3+. The microwave absorption property of the La0.85Ag0.15MnO3 sample is enhanced with the bandwidth below −10 dB at about 6 GHz and the peak value of reflection loss is near −25.0 dB at the layer thickness of 2 mm.  相似文献   

20.
Fe/graphite oxide nanocomposites were prepared by inserting Fe3+ into layers of graphite oxide and then reducing Fe3+/graphite oxide compound at different reduced reaction temperatures in H2. The composition, crystal structure, magnetic and microwave absorption properties of Fe/graphite oxide nanocomposites were investigated using elemental analysis, transmission electron microscope (TEM), X-ray diffraction (XRD), magnetic hysteresis curve and electromagnetic parameter analysis. The results show that the densities of samples are 2.43–2.47 g/cm3 and the nanocomposites are soft magnetic materials. The optimum reduced reaction temperature for preparing Fe/graphite oxide nanocomposites is 600 °C. With the increase of the thickness of the sample, the matching frequency tends to shift to the lower frequency region, and theoretical reflection loss becomes less at the matching frequency. Microwave absorption property of Fe/graphite oxide nanocomposites prepared at 600  °C (FeGO600) is the best. When the thickness is 1 mm, the maximum theoretical reflection loss of FeGO600 is −9 dB and the frequency region in which the maximum reflection loss is more than −6.0 dB is 11–18 GHz. In conclusion, FeGO600 is a good candidate for microwave absorbent due to its low density, wide frequency region for microwave absorption and large reflection loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号