首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We show that spin-dependent resonant tunneling can dramatically enhance tunneling magnetoresistance. We consider double-barrier structures comprising a semiconductor quantum well between two insulating barriers and two ferromagnetic electrodes. By tuning the width of the quantum well, the lowest resonant level can be moved into the energy interval where the density of states for minority spins is zero. This leads to a great enhancement of the magnetoresistance, which exhibits a strong maximum as a function of the quantum well width. We demonstrate that magnetoresistance exceeding 800% is achievable in GaMnAs/AlAs/GaAs/AlAs/GaMnAs double-barrier structures.  相似文献   

2.
We report on experiments in which a spin-polarized current is injected from a GaMnAs ferromagnetic electrode into a GaAs layer through an AlAs barrier. The resulting spin polarization in GaAs is detected by measuring how the tunneling current, to a second GaMnAs ferromagnetic electrode, depends on the orientation of its magnetization. Our results can be accounted for by sequential tunneling with the nonrelaxed spin splitting of the chemical potential, that is, spin accumulation, in GaAs. We discuss the conditions on the hole spin relaxation time in GaAs that are required to obtain the large effects we observe.  相似文献   

3.
A single-barrier GaAs/AlAs/GaAs heterostructure, with self-assembled In-based quantum dots incorporated in the AlAs tunnel barrier, exhibits a series of resonant peaks in the low temperature current–voltage characteristics. We argue that each peak arises fromsingle-electrontunneling through thediscrete zero-dimensionalstate of anindividualInAs dot. We use the tunneling for fine probing of the local density of states in the emitter-accumulation layer. Landau-quantized states are resolved at magnetic field B∥ as low as 0.2 T. Spin-splitting of the dot electron states has been observed forBI.  相似文献   

4.
The spin-polarized tunneling current through a double barrier resonant tunneling diode (RTD) made with a semimagnetic semiconductor is studied theoretically. The calculated spin-polarized current and polarization degree are in agreement with recent experimental results. It is predicted that the polarization degree can be modulated continuously from +1 to −1 by changing the external voltage such that the quasi-confined spin-up and spin-down energy levels shift downwards from the Fermi level to the bottom of the conduction band. The RTD with low potential barrier or the tunneling through the second quasi-confined state produces larger spin-polarized current. Furthermore a higher magnetic field enhances the polarization degree of the tunneling current.  相似文献   

5.
张杨  张予  曾一平 《中国物理 B》2008,17(12):4645-4647
This paper studies the dependence of I-V characteristics on quantum well widths in AlAs/In0.53Ga0.47As and AlAs/In0.53Ga0.47As/InAs resonant tunneling structures grown on InP substrates. It shows that the peak and the valley current density in the negative differential resistance region are closely related with quantum well width. The measured peak current density, valley current densities and peak-to-valley current ratio of resonant tunneling diodes are continually decreasing with increasing well width.  相似文献   

6.
The spin-polarized tunneling current through a double barrier resonant tunneling diode (RTD) with ferromagnetic GaMnN emitter/collector is investigated theoretically. Two distinct spin splitting peaks can be observed at current-voltage (I-V) characteristics at low temperature. The spin polarization decreases with the temperature due to the thermal effect of electron density of states. When charge polarization effect is considered at the heterostructure, the spin polarization is enhanced significantly. A highly spin-polarized current can be obtained depending on the polarization charge density.  相似文献   

7.
We present two approaches to integrate magnetic materials with III–V semiconductors. One is epitaxial ferromagnetic metallic films and heterostructures on GaAs (0 0 1) substrates. Although crystal structure, lattice constant, chemical bonding and other properties are dissimilar, ferromagnetic hexagonal MnAs thin films and MnAs/NiAs ferromagnet/nonmagnet heterostructures (HSs) are grown on GaAs by molecular beam epitaxy (MBE). Multi-stepped magnetic hysteresis are controllably realized in MnAs/NiAs HSs, making this material promising for the application to multi-level nonvolatile recording on semiconductors. The other approach is to prepare a new class of GaAs based magnetic semiconductor, GaMnAs, by low-temperature molecular beam epitaxy (LT-MBE) on GaAs (0 0 1). New III–V based superlattices consisting of ferromagnetic semiconductor GaMnAs and nonmagnetic semiconductor AlAs are also successfully grown. Structural and magnetic properties of these new heterostructures are presented.  相似文献   

8.
We report on experiments and theory of resonant tunneling anisotropic magnetoresistance (TAMR) in AlAs/GaAs/AlAs quantum wells (QW) contacted by a (Ga,Mn)As ferromagnetic electrode. Such resonance effects manifest themselves by bias-dependent oscillations of the TAMR signal correlated to the successive positions of heavy (HH) and light (LH) quantized hole energy levels in GaAs QW. We have modeled the experimental data by calculating the spin-dependent resonant tunneling transmission in the frame of the 6 x 6 valence-band k.p theory. The calculations emphasize the opposite contributions of the (Ga,Mn)As HH and LH subbands near the Gamma point, unraveling the anatomy of the diluted magnetic semiconductor valence band.  相似文献   

9.
The effect of a smooth interface potential on the electronic states in GaAs/AlAs (001) structures is investigated using the pseudopotential method. In this approach, the transition region between GaAs and AlAs is assumed to be a layer corresponding to a half-period of the (AlAs)2(GaAs)2 superlattice, with the potential of this layer being close to the real potential near the heterointerface. In this case, the intervalley mixing occurs at two boundaries and in the transition layer rather than at one boundary, as in the model with a sharply cut-off potential. It is shown that a smooth potential has an appreciable effect on electron tunneling in structures with thin layers. This effect is especially important in the case where short-wavelength X states are involved. For one GaAs/AlAs (001) boundary, the transition layer acts as a quantum well localizing the charge density of a mixed Γ-X state near the boundary. In structures with a layer thickness of less than 2 nm, the differences in the resonance energies obtained in the models with a smooth heterointerface and with a sharp heterointerface can be as high as ~0.1 eV. The envelopes of the wave functions associated with Γ 1 (1) , Γ 1 (2) , and Γ 3 (1) superlattice valleys and with Γ1, X 1, and X 3 valleys of GaAs and AlAs are analyzed. It is shown that the matching matrices for the envelope functions at the GaAs/(AlAs)2(GaAs)2 and (AlAs)2(GaAs)2/AlAs boundaries depend only weakly on the electron energy near the bottom of the conduction band and that the probability densities calculated using these functions agree with the results of many-band calculations. Therefore, these functions can be used to construct a model with a smooth interface potential in the framework of the effective-mass method.  相似文献   

10.
The electric-field enhancement of the resonant Raman efficiency of confined optical phonon modes in a single quantum well has been observed in an asymmetrical n-type triple-barrier GaAs/AlAs resonant tunneling structure. The measurement takes advantage of an outgoing resonance with the e2-hh1 exciton transition confined to the wide quantum well, and according to the polarization properties, the Fröhlich interaction dominates the scattering mechanism. A fifteenfold increase is found from zero field to 7.5 × 104 V/cm, which results from break-down of the parity selection rules for the photon-exciton and the exciton phonon coupling mechanisms.  相似文献   

11.
The characteristics of the high-frequency response of single- and double-well resonant tunneling structures in a dc electric field are investigated on the basis of the numerical solution of a time-dependent Schrödinger equation with open boundary conditions. The frequency dependence of the real part of high frequency conductivity (high-frequency response) in In0.53Ga0.47As/AlAs/InP structures is analyzed in detail for various values of the dc voltage V dc in the negative differential resistance (NDR) region. It is shown that double-well three-barrier structures are promising for the design of terahertz-band oscillators. The presence of two resonant states with close energies in such structures leads to a resonant (in frequency) response whose frequency is determined by the energy difference between these levels and can be controlled by varying the parameters of the structure. It is shown that, in principle, such structures admit narrow-band amplification, tuning of the amplification frequency, and a fine control of the amplification (oscillation) frequency in a wide range of terahertz frequencies by varying a dc electric voltage applied to the structure. Starting from a certain width of the central intermediate barrier in double-well structures, one can observe a collapse of resonances, where the structure behaves like a single-well system. This phenomenon imposes a lower limit on the oscillation frequency in three-barrier resonant tunneling structures.  相似文献   

12.
The paper is devoted to analysis of the electron transport through one-barrier GaAs/AlAs/GaAs heterostructures. The oscillating component of transport characteristics of symmetric one-barrier GaAs/AlAs/GaAs heterostructures with spacers, which is associated with resonance tunneling of electrons via virtual states formed in the spacer region of the structures due to reflection of electrons from the n?-GaAs/n+-GaAs interface and their subsequent interference. It is shown that electrons are predominantly reflected coherently from the boundary of the strongly doped region as in the case of one-dimensional averaged potential of randomly arranged (beginning from this boundary) impurities. It is shown that low-energy virtual resonances are suppressed due to electron scattering as a result of their interaction with longitudinal optical (LO) phonons in the spacer region.  相似文献   

13.
Quantum coherent transport of spin-polarized carriers is observed on a very unusual large scale within epitaxial nanowires of GaMnAs, a diluted ferromagnetic semiconductor. From the analysis of the amplitude of strong universal conductance fluctuations, an effective phase coherence length of about 100 nm is inferred at T=100 mK, which is one order of magnitude larger than in a granular 3d-metal ferromagnets. Together with the temperature and bias dependence of these reproducible fluctuations, their wire-length dependence is studied in single-domain sub-micron long nanowires with a perprendicular anisotropy. In particular, variations for two equivalent probe configurations are shown when the length becomes comparable to the actual phase coherence length. This result forecasts the possible observation of non-local voltage drops in GaMnAs nanostructures smaller than about 200 nm. Generally speaking, this research contributes to pave the way towards the realization of quantum spintronics devices.  相似文献   

14.
InAs/GaSb/AlSb resonant tunneling spin device concepts   总被引:1,自引:0,他引:1  
We discuss device concepts for creating spin-polarized current sources without external magnetic fields, using non-magnetic 6.1 Å semiconductor resonant tunneling structures. Spin filters, spin pumps, and spin transistors that exploit structural and bulk inversion asymmetries will be examined.  相似文献   

15.
We report the observation of resonant tunneling and magneto-tunneling between states of different effective mass derived from zone centre (Γ) and zone edge (X) points of the Brillouin zone in single AlAs barrier diodes. The nature of the X states involved (longitudinal Xzor transverseXxy ) is deduced from the observed resonances in the conductance versus bias characteristics at zero magnetic field (B). At finite B, the σ–V curves exhibit resonant magneto-tunneling with XzLandau levels (LL), whilst no evidence of resonances withXxy LLs is found. Clear observation of both LL index (in-plane momentum) conserving and non-conserving tunneling to Xzallows the transverse effective mass in AlAs to be determined. As a consequence of the different effective masses, momentum-conserving tunneling is inhibited at B = 0, but is restored when high B is applied.  相似文献   

16.
We report on a theoretical investigation of spin-polarized transport in a δ-doped magnetically modulated semiconductor nanostructure, which can be experimentally realized by depositing a ferromagnetic stripe on the top of a semiconductor heterostructure and by using the atomic layer doping technique such as molecular beam epitaxy (MBE). It is shown that although such a nanostructure has a zero average magnetic filed, a sizable spin polarization exists due to the Zeeman splitting mechanism. It is also shown that the degree of spin polarization varies sensitively with the weight and/or position of the δ-doping. Therefore, one can conveniently tailor the behaviour of the spin-polarized electron by tuning the δ -doping, and such a device can be employed as a controllable spin filter for spintronics.  相似文献   

17.
Ferromagnetic ordering of silver impurities in the AlN semiconductor is predicted by plane-wave ultrasoft pseudopotential and spin-polarized calculations based on density functional theory (DFT). It was found that an Ag impurity atom led to a ferromagnetic ground state in Ag0.0625Al0.9375N, with a net magnetic moment of 1.95 μB per supercell. The nitrogen neighbors at the basal plane in the AgN4 tetrahedron are found to be the main contributors to the magnetization. This magnetic behavior is different from the ones previously reported on transition metal (TM) based dilute magnetic semiconductor (DMS), where the magnetic moment of the TM atom impurity is higher than those of the anions bonded to it. The calculated electronic structure band reveals that the Ag-doped AlN is p-type ferromagnetic semiconductor with a spin-polarized impurity band in the AlN band gap. In addition, the calculated density of states reveals that the ferromagnetic ground state originates from the strong hybridization between 4d-Ag and 2p-N states. This study shows that 4d transition metals such as silver may also be considered as candidates for ferromagnetic dopants in semiconductors.  相似文献   

18.
Theoretical studies on spin-dependent transport in magnetic tunnel heterostructures consisting of two diluted magnetic semiconductors (DMS) separated by a nonmagnetic semiconductor (NMS) barrier, are carried in the limit of coherent regime by including the effect of angular dependence of the magnetizations in DMS. Based on parabolic valence band effective mass approximation and spontaneous magnetization of DMS electrodes, we obtain an analytical expression of angular dependence of transmission for DMS/NMS/DMS junctions. We also examine the dependence of spin polarization and tunneling magnetoresistance (TMR) on barrier thickness, temperature, applied voltage and the relative angle between the magnetizations of two DMS layers in GaMnAs/GaAs/GaMnAs heterostructures. We discuss the theoretical interpretation of this variation. Our results show that TMR of more than 65% are obtained at zero temperature, when one GaAs monolayer is used as a tunnel barrier. It is also shown that the TMR decreases rapidly with increasing barrier width and applied voltage; however at high voltages and low thicknesses, the TMR first increases and then decreases. Our calculations explain the main features of the recent experimental observations and the application of the predicted results may prove useful in designing nano spin-valve devices.  相似文献   

19.
The influence of strain on hole tunneling in trilayer and double barrier structures made of two diluted magnetic semiconductors (DMS) (Ga, Mn)As, separated by a thin layer of non-magnetic AlAs is investigated theoretically. The strain is caused by lattice mismatch as the whole structure is grown on a (In0.15Ga0.85)As buffer layer. The tensile strain makes the easy axis of magnetization orient along the growth direction. We found that biaxial strain has a strong influence on the tunneling current because the spin splitting at is comparable to the Fermi energy EF. Tensile strain decreases the tunneling magnetoresistance ratio.  相似文献   

20.
The morphology and electronic properties of Au nanoclusters on the surface of SiO2 thin films on n +-Si substrates are studied using the combined scanning tunneling microscopy (STM) and atomic-force microscopy (AFM) technique. The peaks associated with the resonant tunneling of electrons from the states of the valence band of the probe material to the states of the conduction band of the substrate material through Au nanoclusters are observed on the current-voltage characteristics for the contact of a p +-Si AFM probe with Au nanoclusters. Experimental results are interpreted by calculating the tunnel transparency of the SiO2/Au/SiO2 double barrier structure in a strong electric field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号