首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have studied the structural, electronic, and magnetic properties of (ZnS)12 clusters doped with one (monodoped) and two (bidoped) Cr atoms in terms of a first-principles method. Substitutional, exohedral, and endohedral doping are considered. The substitutional isomer is found to be most favorable in energy for monodoped clusters, while the exohedral isomers are found to be most favorable for bidoped clusters. The magnetic coupling between the Cr atoms is mainly governed by the competition between direct Cr-Cr antiferromagnetic (AFM) interaction and the ferromagnetic (FM) interaction between two Cr atoms via S atom due to strong p-d hybridization. Finally, we show that the exohedral bidoped (ZnS)12 clusters favor the FM state, which has potential applications in nanoscale quantum devices.  相似文献   

2.
采用第一性原理方法研究Ni原子单掺杂和双掺杂(ZnO)12团簇的结构和磁性质.考虑替代掺杂、外掺杂和内掺杂三种掺杂方式.研究发现:不管是单掺杂还是双掺杂,外掺杂团簇都是最稳定结构.Ni原子之间的磁性耦合由直接的Ni-Ni反铁磁耦合和Ni和O原子之间通过p-d杂化产生的铁磁耦合这两种相互作用的竞争来决定.最重要的是,外双掺杂和内双掺杂团簇都存在铁磁耦合,在纳米量子器件有潜在的应用价值.  相似文献   

3.
过渡金属掺杂氧化锌团簇的物性研究   总被引:1,自引:0,他引:1  
本文采用第一性原理密度泛函理论研究了过渡金属(TM)原子Cr和Fe单掺杂和双掺杂(ZnO)12团簇的结构和磁性质。我们考虑了替代掺杂和间隙掺杂。结果表明Cr 和 Fe间隙掺杂团簇结构最稳定。团簇磁矩主要来自TM原子3d态的贡献,4s 和4p 态也贡献了一小部分磁矩。由于轨道杂化,相邻的Zn和O原子上也产生少量自旋。最近邻TM原子间的磁性耦合,主要由两个TM原子之间的直接短程铁磁耦合和TM和O原子之间通过p-d杂化产生的反铁磁耦合这两种相互作用的竞争来决定。不同TM原子掺杂团簇的总磁矩与TM原子种类以及掺杂位置有关,说明在(ZnO)12团簇中掺杂不同TM原子在可调磁矩的磁性材料的领域有潜在应用价值。  相似文献   

4.
谢建明  陈红霞 《计算物理》2014,31(3):372-378
采用第一性原理密度泛函理论系统地研究Co原子单掺杂和双掺杂(ZnO)12团簇的结构和磁性质.考虑三种掺杂方式:替代掺杂,外掺杂和内掺杂.首先比较各种掺杂团簇的稳定性.结果表明,不管是单掺杂还是双掺杂,外掺杂团簇都是最稳定结构.在结构优化的基础上,对掺杂的(ZnO)12团簇进行磁性计算.发现团簇磁矩主要来自Co-3d态的贡献,4s和4p态也贡献了一小部分磁矩.由于轨道杂化,相邻的Zn和O原子也产生少量自旋.Co原子之间的磁性耦合由直接的Co-Co反铁磁耦合和Co和O原子之间通过p-d杂化产生的铁磁耦合这两种相互作用的竞争决定.研究发现外双掺杂团簇存在铁磁耦合,在纳米量子器件有潜在的应用价值.  相似文献   

5.
本文采用密度泛函理论研究了V原子单掺杂和双掺杂(ZnS)12团簇的几何结构和能量稳定性。我们考虑了三种掺杂方式:替代掺杂,外掺杂和内掺杂。单掺杂时,替代掺杂团簇是最稳定结构,而对于双掺杂,外掺杂团簇是最稳定结构。团簇磁矩主要来自V-3d态的贡献,4s和4p态也贡献了一小部分磁矩。由于轨道杂化,相邻的Zn和S原子上也产生少量自旋。结果显示V原子间的磁性耦合是短程相互作用。相邻V原子之间的磁性耦合由直接的V-V反铁磁耦合和两个V和S原子之间通过p-d杂化产生的铁磁耦合这两中相互作用的竞争来决定。  相似文献   

6.
ABSTRACT

The average magnetic moment per atom of Mn13 cluster is expected to be enhanced by doping or coating with a shell. Several ternary core–shell icosahedral clusters TM@Mn12@Au20 were constructed by combining substituting the central Mn with VIII elements (Fe, Co, Ni, Ru, Rh, Pd and Pt) and coating with a icosahedral Au20 shell, and systematically studied by using the first-principles density functional method. Compared to Mn13, Fe@Mn12@Au20 cluster shows a giant enhancement on total magnetic moment (52?µB) which can be greatly attributed to the ferromagnetic coupling between spin moments of atoms. Coating with Au20 shell enlarged the average distances of TM-Mn and Mn-Mn and is a useful way to change the magnetic coupling style. By analysis of density of states and electron localisation functional, we can conclude that the weak hybridisation between Fe and Mn in Fe@Mn12@Au20 is propitious to maintain their original direction of spin moments of atoms and then form ferromagnetic coupling.  相似文献   

7.
We report the electronic structure of Cd(TM)O2 (TM=Cr, Mn, Fe, Co, Ni) in the chalcopyrite structures. From this study we find that Cd(TM)O2 is a half-metallic ferromagnetic compound. From the energy consideration we find that Cd(TM)O2 is more stable in chalcopyrite structure rather than in rock salt structure. A careful analysis of the spin density reveals the ferromagnetic coupling between the p-d states and the cation dangling-bond p states, which is believed to be responsible for the stabilization of the ferromagnetic phase. The calculated heat of formation, bulk modulus and cohesive energy are reported.  相似文献   

8.
We have studied the energetics and magnetism in Cr-doped (ZnTe)12 clusters by first principles density functional calculations. Total energy calculations suggest that it is energetically most favourable for Cr atoms to substitute at Zn sites. Both ferromagnetic and anti-ferromagnetic coupling between the Cr atoms exist depending on the Cr-Cr distance in the clusters. The magnetic exchange coupling between Cr atoms is short-ranged.  相似文献   

9.
本文采用第一性原理密度泛函理论系统的研究了Fe原子单掺杂和双掺杂(ZnTe)12团簇的结构和磁性质。我们考虑了替代掺杂和间隙掺杂。不管是单掺杂还是双掺杂,间隙掺杂团簇都是最稳定结构。团簇磁矩主要来自Fe-3d态的贡献,4s 和4p 态也贡献了一小部分磁矩。由于轨道杂化,相邻的Zn和Te原子上也产生少量自旋。最重要的是,我们指出间隙双掺杂团簇是铁磁耦合,在纳米量子器件有潜在的应用价值。  相似文献   

10.
本文采用第一性原理密度泛函理论系统的研究了Fe原子单掺杂和双掺杂( ZnTe)12团簇的结构和磁性质。我们考虑了替代掺杂和间隙掺杂。不管是单掺杂还是双掺杂,间隙掺杂团簇都是最稳定结构。团簇磁矩主要来自Fe-3d态的贡献,4s和4p态也贡献了一小部分磁矩。由于轨道杂化,相邻的Zn和Te原子上也产生少量自旋。最重要的是,我们指出间隙双掺杂团簇是铁磁耦合,在纳米量子器件有潜在的应用价值。  相似文献   

11.
Magnetic properties of transition-metal (TM) atoms (TM = Co, Cu, Mn, Fe, and Ni) doped ReS2 monolayer are investigated by ab initio calculations. It is found that magnetism appears in the cases of Co, Fe, and Ni. Among all the samples, the Co-doped system has the largest magnetic moment. Therefore, we further study the interaction in the two-Co-doped system. Our results show that the interaction between two Co atoms is always ferromagnetic (FM), but such FM interaction is obviously depressed by the increasing Co–Co distance, which is well described by a simple Heisenberg model based on the Zener theory. Our results provide useful insight for promising applications of TM-doped ReS2 monolayer in the future.  相似文献   

12.
The geometrical, electronic, and magnetic properties of small CunFe (n=1–12) clusters have been investigated by using density functional method B3LYP and LanL2DZ basis set. The structural search reveals that Fe atoms in low-energy CunFe isomers tend to occupy the position with the maximum coordination number. The ground state CunFe clusters possess planar structure for n=2–5 and three-dimensional (3D) structure for n=6–12. The electronic properties of CunFe clusters are analyzed through the averaged binding energy, the second-order energy difference and HOMO–LUMO energy gap. It is found that the magic numbers of stability are 1, 3, 7 and 9 for the ground state CunFe clusters. The energy gap of Fe-encapsulated cage clusters is smaller than that of other configurations. The Cu5Fe and Cu7Fe clusters have a very large energy gap (>2.4 eV). The vertical ionization potential (VIP), electron affinity (EA) and photoelectron spectra are also calculated and simulated theoretically for all the ground-state clusters. The magnetic moment analyses for the ground-state CunFe clusters show that Fe atom can enhance the magnetic moment of the host cluster and carries most of the total magnetic moment.  相似文献   

13.
We present extensive first principles density functional theory (DFT) calculations dedicated to analyze the magnetic properties of small Fe n clusters (n = 2,3) embedded in Cu fcc, Ag fcc and Au fcc matrices. We consider several dimers and trimers having different interatomic distances. In all cases the Fe atoms are embedded as substitutional impurities in the metallic network. For the case of the Fe dimers we have considered two magnetic configurations: ferromagnetic (antiferromagnetic), when the atomic magnetic moment of the Fe atoms are parallel (antiparallel) each other. For the case of dimers immersed in Cu and Ag matrices, the ground state corresponds to the ferromagnetic Fe dimer whose interatomic distance is a/√2. For Fe dimer immersed in the Au matrix the ground state corresponds to a ferromagnetic coupling when the interatomic distance is a√(3/2). In the case of the Fe trimers we have considered three or four magnetic configurations, depending on the Fe cluster geometry. For the case of Fe trimer immersed in Cu and Ag matrices we have found that the ground state corresponds to the ferromagnetic trimer forming an equilateral triangle with an interatomic distance equal to a/√2. The ground state for the Fe trimer immersed in the Au matrix corresponds to the ferromagnetic Fe trimer forming a right angle triangle.  相似文献   

14.
The magnetic properties of SiC monolayer with different TM atoms and substitutional sites are investigated using first-principles method. Magnetism is observed for all the TM dopants. The magnetic moments and binding energies are quite different between Si (TMSi) and C (TMC) sites. Dependent to the larger magnetic moments and binding energy, we also investigate the interaction between two Mn atoms in the TMSi system. The results show that the ferromagnetic states are originated by the p–d hybridization mechanism between Mn and its neighboring C atoms. Moreover, the antiferromagnetic coupling is observed with increasing Mn-Mn distance, which can be explained by two-impurity Haldane-Anderson model using quantum Monte Carlo method.  相似文献   

15.
The magnetic and electronic properties of TM (TM=Cr, Mn, and Fe) adatoms adsorption on Si(001) surface are studied by means of the first-principles method. For the adsorption of a single TM atom on Si(001), we obtain decreasing spin moments and increasing adsorption energies as TM varies from Cr to Fe. In the case of TM dimers adsorption, the calculated results show that the spin coupling changes from antiferromagnetic (AFM) to ferromagnetic (FM) as the 3d electrons increased. AFM coupling is found to be preferred for Cr, while FM coupling is energetically favorable for Mn and Fe. In the case of TM wires, we find that the FM state is energetically preferred for Mn and Fe atoms on the Si(001) surface, while for Cr wires, the up–down–up state for P–M–M site Cr atoms seems to be more energy favorable. We also find that the silicon surfaces become metallic for the adsorption of TM wires.  相似文献   

16.
The geometrical and electronic properties of small Al-doped Zrn−1 and host Zrn clusters (n=2-8) are investigated with hybrid HF/DFT functional: B3LYP. For the most favorable configurations of Zrn−1Al clusters, the Al atom prefers to be located on the surface of host zirconium clusters. The isomers that correspond to low coordination number of Zr-Al bonds are found to be more stable. The doping of Al atom in Zrn−1 clusters improves the chemical activities of host clusters. The Zr5, Zr7, Zr4Al and Zr6Al clusters behave the stronger stabilities relative to their respective neighbors. The strong s-d hybridizations are presented in all bonding Zr atoms. The values of WBI together with AIM analysis suggest that the Zr-Zr interactions are stronger than those between Zr and Al atoms. The doping of Al atom results into the decrease of spin magnetic moments for host zirconium clusters. The moments are mainly derived from the 4d electrons of bonding Zr atoms.  相似文献   

17.
The structural, electronic and magnetic properties of TMGen (TM=Mn, Co, Ni; n=1-13) have been investigated using spin polarized density functional theory. The transition metal (TM) atom prefers to occupy surface positions for n<9 and endohedral positions for n≥9. The critical size of the cluster to form endohedral complexes is at n=9, 10 and 11 for Mn, Co and Ni respectively. The binding energy of TMGen clusters increases with increase in cluster size. The Ni doped Gen clusters have shown higher stability as compared to Mn and Co doped Gen clusters. The HOMO-LUMO gap for spin up and down electronic states of Gen clusters is found to change significantly on TM doping. The magnetic moment in TMGen is introduced due to the presence of TM. The magnetic moment is mainly localized at the TM site and neighbouring Ge atoms. The magnetic moment is quenched in NiGen clusters for all n except for n=2, 4 and 8.  相似文献   

18.
197Au Mössbauer spectra from Au/TM (TM = Fe, Co, Ni) multilayers consist mainly of two components. One component shows a large hyperfine magnetic field due to the hybridization at the interface between Au and ferromagnetic layers. The other component is nonmagnetic arising from the middle part of the Au layers. From the fractional area of the magnetic components in each spectrum, the Au atoms in 0.4 nm Au layers are perturbed by the Fe and Ni layers, and Co layers perturb 0.3 nm Au layers at the interface.  相似文献   

19.
The geometries, electronic, and magnetic properties of the 3d atom doped icosahedron (ICO) Ti12M (M=Sc to Zn), where a dopant atom replaces either the centra l(Ti12Mc) or surface (Ti12Ms) Ti atom in ICO Ti13 cluster, have been systematically investigated by using the density functional theory. The structures of all the optimized Ti12Mc and Ti12Ms clusters are distorted ICO. Sc, Ni, Cu, and Zn atoms prefer to displace surface Ti atom, V, Cr, Mn, and Fe atoms prefer to displace central Ti atom. The position of impurity atom depends on the strength of the interaction between the central atom and the surface atoms. As compared to the pure Ti13 cluster, Ti12Mc and Ti12Ms (M=V, Fe, Co, and Ni) clusters are more stable, Ti12Mc and Ti12Ms (M=Sc, Cr, Mn, Cu, and Zn) are less stable. Both Ti12Nis and Ti12Nic are magic clusters, which originate from their electronic as well as geometric closed shells. Because the exchange interaction prevails over the crystal field in Ti12M clusters, the valence electrons fill molecular orbitals in terms of Hund’s rule of maximum spin.  相似文献   

20.
Novel icosahedral quasicrystals, in which Fe atoms possess a magnetic moment, have been found in Al70?x BxPd30?y Fey compounds with 5<x<10 and 10<y<20. The compounds have ferromagnetic properties, and their Curie temperature ranges between 280 and 340 K, the saturation magnetization σ s(5 K)≈7.5 emu/g. It follows from Mössbauer spectra that only a fraction of Fe atoms (12 to 15%) are magnetically ordered at 4.2 K, and the mean saturation field 〈H hf〉=96 kOe. The isomer shift values confirm that the atomic volume of magnetic Fe sites is larger than that of nonmagnetic Fe sites. The magnetic properties of these quasicrystals can be interpreted in terms of large magnetic clusters with a size of 185 to 290 Å. This size correspond to about 4×104 “unit cells,” hence the magnetic state can be described in terms of bulk parameters. The localized magnetic moment of Fe atoms is tentatively ascribed to bonding between Fe and B, similarly to that in the amorphous Fe~50B~50 alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号