首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnetic behavior of Ni2+xMn1−xAl alloys around the stoichiometric 2:1:1 composition was investigated with several experimental techniques. The results of low-temperature magnetization measurements indicate that a competition mechanism between ferromagnetism and antiferromagnetism is expected in off-stoichiometric alloys. Although the Curie temperature is strongly dependent on the composition, the saturation magnetization has an unsystematic variation for deviations from the stoichiometric Ni2MnAl alloy. A reentrant-spin-glass behavior is observed below 50 K.  相似文献   

2.
The lead salts and their alloys are extremely interesting semiconductors due to their technological importance. The fabrication of devices with alloys of these compounds possessing detecting and lasing capabilities has been an important recent technological development. The high quality polycrystalline thin films of PbSe1−xTex with variable composition (0≤x≤1) have been deposited onto ultra clean glass substrates by vacuum evaporation technique. As deposited films were annealed in vacuum at 350 K. The optical, electrical and structural properties of PbSe1−xTex thin films have been examined. The optical constants (absorption coefficient and bandgap) of the films were determined by absorbance measurements in the wavelength range 2500-5000 nm using Fourier transform infrared spectrophotometer. The dc conductivity and activation energy of the films were measured in the temperature range 300-380 K. The X-ray diffraction patterns were used to determine the sample quality, crystal structure and lattice parameter of the films.  相似文献   

3.
Ni-rich Heusler alloys Ni52Mn48−xInx (x=15.5, 16 and 16.5) were prepared by the arc melting method. X-ray diffraction analysis revealed that the martensite has orthorhombic structure (S.G. Pmm2) at room temperature. The only alloy with x=15.5 has structural transmission from martensite to austenite without any magnetic transmission. The temperature dependence and the field dependence of the magnetization measurement indicated that the magnetization increased with the decreasing of the concerntration of Mn. The lesser the Mn atoms located in the In atom sites, the weaker the total AFM interaction in the system. Giant entropy changes ΔSM(T, H) were found in Ni52Mn48−xInx alloys with the maximum ΔSM value of 22.3 J kg K for the sample with x=16.5 at 270 K under the magnetic field change of 1.5 T.  相似文献   

4.
A series of PdxNi1 − x nanoparticles in a diameter of 6-7 nm were prepared by wet chemical reduction. They were then modified with two surfactants, stearic acid (SA) and polyethylene glycol (PEG). Desorption of the surfactant was studied using a temperature programmed desorption technique, and the sintering behavior of surface-modified PdxNi1 − x nanoparticles was examined. Since surface energy of the nanoparticles depends on the alloy composition, it can be correlated with the desorption temperature of surfactant from the nanoparticle surface. Because Ni has a higher surface energy, the surfactant desorption temperature increases as the Ni content increases. With the same stoichiometry, the desorption temperature of SA is always higher than that of PEG. The SA-modified nanoparticles have higher thermal stability and are less sintered than PEG-modified nanoparticles. The sintering and growth behavior of the nanoparticles can be correlated with variation of surface energy due to different surface modification.  相似文献   

5.
Structural, electronic and optical properties as well as structural phase transitions of ternary alloy CdxZn1 − xS have been investigated using the first-principles calculations based on the density functional theory. We found that the crystal structure of CdxZn1 − xS alloys transforms from wurtzite to zinc blende as Cd content of x=0.83x=0.83. Effect of Cd content on electronic structures of CdxZn1 − xS alloys has been studied. The bandgaps of CdxZn1 − xS alloys with wurtzite and zinc blende structures decrease with the increase of Cd content. Furthermore, dielectric constant and absorption coefficient also have been discussed in detail.  相似文献   

6.
The Tb0.29(Dy1−xPrx)0.71Fe1.97 (x=0, 0.1, 0.2 and 0.3) alloys were prepared by directional solidification method. The orientation, magnetostriction λ, Curie temperature Tc and microstructure of alloys were characterized by XRD, standard resistant strain gauge technique, VSM and SEM-EDS. The results reveal that the alloys have a preferred orientation of 〈1 1 0〉 and 〈1 1 3〉 direction when x>0. With the increase in Pr content, the Tc of alloys decreases gradually and the non-cubic phase appears, resulting in the decline of λ dramatically, from 1935.2×10−6 for x=0 to 695.9×10−6 for x=0.3 at a compressive stress of 6 MPa and a magnetic field of H=240 kA m−1.  相似文献   

7.
Synthesis by arc melting, the structural and the electric properties of Y(Co1−xNix)2 alloys were studied by X-ray diffraction (XRD) and four probe dc electrical measurements. XRD analysis (300 K) shows that all samples crystallize in a cubic MgCu2-type structure. The lattice parameters linearly decrease with Ni content. Electrical resistivity for the Y(Co1−xNix)2 intermetallic series was measured in a temperature range of 15-1100 K. The parameters involved in the dependence of resistivity on temperature were determined. Residual, phonon and spin fluctuations resistivity were separated from electrical resistivity using both the Matthiesen formula and the Bloch-Gruneisen formula. The spin fluctuations resistivity of the Y(Co1−xNix)2 series are compared to the mean square amplitudes of spin fluctuations previously calculated by the Linear Muffin Tin Orbital-Tight Binding Approach method for these series in the literature. The contribution of spin fluctuations to total resistivity ρsf is proportional to T2 at low temperatures. The proportionality parameter strongly reduces across the Y(Co1−xNix)2 series.  相似文献   

8.
A series of Ni43Mn46Sn11−xSbx (x=0, 1, and 3) alloys were prepared by an arc melting method. The martensitic transition shifts to higher temperature with the increasing Sb content. The isothermal magnetization curves and Arrott plots around martensitic transition temperatures show a typical metamagnetic behavior. Under a low applied magnetic field of 10 kOe, large magnetic entropy changes around the martensitic transition temperature are 10.4, 8.9, and 7.3 J/kg K, for x=0, 1, and 3, respectively. The origin of the large magnetic entropy changes and potential application for Ni43Mn46Sn11−xSbx alloys as working substances in magnetic refrigeration are discussed.  相似文献   

9.
A series of ZnO1−xSx alloy films (0 ≤ x ≤ 1) were grown on quartz substrates by radio-frequency (rf) magnetron sputtering of ZnS ceramic target, using oxygen and argon as working gas. X-ray diffraction measurement shows that the ZnO1−xSx films have wurtzite structure with (0 0 2) preferential orientation in O-rich side (0 ≤ x ≤ 0.23) and zinc blende structure with (1 1 1) preferential orientation in S-rich side (0.77 ≤ x ≤ 1). However, when the S content is in the range of 0.23 < x < 0.77, the ZnO1−xSx film consists of two phases of wurtzite and zinc blende or amorphous ZnO1−xSx phase. The band gap energy of the films shows non-linear dependence on the S content, with an optical bowing parameter of about 2.9 eV. The photoluminescence (PL) measurement reveals that the PL spectrum of the wurtzite ZnO1−xSx is dominated by visible band and its PL intensity and intensity ratio of UV to visible band decrease greatly compared with undoped ZnO. All as-grown ZnO1−xSx films behave insulating, but show n-type conductivity for w-ZnO1−xSx and maintain insulating properties for β-ZnO1−xSx after annealed. Mechanisms of effects of S on optical and electrical properties of the ZnO1−xSx alloy are discussed in the present work.  相似文献   

10.
The electronic and optical properties of the direct band gap alloys SnxGe1 − x (x = 0.000, 0.042, 0.083, 0.125, 0.167, and 0.208) have been studied by using the generalized gradient approximation in the framework of the density functional theory. The calculated lattice constants obey Vergard's law. The band structures show that the alloys have direct band gap and the band gaps can be tunable by Sn contents. The optical properties of the SnxGe1 − x alloys with the physical quantities such as the complex dielectric function, the energy-loss function and the static dielectric constant, respectively, are shown to support the potential application of infrared devices in the future.  相似文献   

11.
CoxNi1−x/Cu3Au(1 0 0) with x ? 11% was prepared at room temperature to study the strain relaxation and their correlation with the spin-reorientation transition. The vertical interlayer distance relaxed from 1.66 Å (fct) to 1.76 Å (fcc) while the thickness increased from 8 ML to 18 ML. Such rapid strain relaxation with thickness was attributed to the larger lattice mismatch between CoxNi1−x and Cu3Au(1 0 0) (η ∼ −6.5%). The smooth change for crystalline structure was observed during strain relaxation process in which the crystalline structure seems irrespective of the alloy composition. To explain the strain relaxation, a phenomenological model was proposed. We provide a physical picture that the deeper layers may not relax while the surface layer start to relax. This assumption is based on the several experimental studies. Using the strain averaged from all layers of thin film as the volume strain of magneto-elastic anisotropy energy, the interrelation between strain relaxation and spin reorientation transition can be well described in a Néel type magneto-elastic model.  相似文献   

12.
Melt spun Ni50−xMn37+xIn13 (2≤x≤5) ribbons were investigated for the structure, microstructure, magneto-structural transitions and inverse magnetocaloric effect (IMCE) associated with the first-order martensitic phase transition. The influence of excess Mn in Ni site (or Ni/Mn content) on the martensite transition and the associated magnetic and magnetocaloric properties are discussed. It was found that with the increase in Mn content, the martensitic transition shifted from 325 to 240 K as x is varied from 2 to 4, and the austenite phase was stabilized at room temperature. The x=5 ribbon did not show the martensitic transition. For the x=3 ribbon, the structural and magnetic transitions are close together unlike in the x=4 ribbon in which they are far (∼60 K) apart. The zero field cooled and field cooled curves support the presence of exchange bias blocking temperature due to antiferromagnetic interactions in the ribbons. A large change in the magnetization between the martensite and austenite phases was observed for a small variation in the Ni/Mn content, which resulted in large IMCE. A large positive magnetic entropy change (ΔSM) of 32 J/kg K at room temperature (∼ 300 K) for a field change of 5 T with a net refrigeration capacity of 64 J/kg was obtained in the Ni47Mn40In13 ribbon.  相似文献   

13.
Structural, magnetic properties and magnetostriction studies of Sm1−xNdxFe1.55 (0≤x≤0.56) alloys have been performed. X-ray diffraction analysis confirms the presence of single cubic Laves phase in Sm1-xNdxFe1.55 alloys with 0≤x≤0.48. The lattice parameter of alloys increases linearly with increase in Nd content while the Curie temperature behaves in the opposite way. The alloy x=0.08 exhibits a giant magnetostriction value (λ-λ) of −2187 ppm at a magnetic field of 12 kOe due to the anisotropy compensation between Sm3+ and Nd3+ ions.  相似文献   

14.
We have fabricated high-quality FeSe1−x superconducting films with a bulk Tc of 11–12 K on different substrates, Al2O3(0 0 0 1), SrTiO3(1 0 0), MgO(1 0 0), and LaAlO3(1 0 0), by using a pulsed laser deposition technique. All the films were grown at a high substrate temperature of 610 °C, and were preferentially oriented along the (1 0 1) direction, the latter being to be a key to fabricating of FeSe1−x superconducting thin films with high Tc. According to the energy dispersive spectroscopy data, the Fe:Se composition ratio was 1:0.90 ± 0.02. The FeSe1−x film grown on a SrTiO3 substrate showed the best quality with a high upper critical magnetic field [Hc2(0)] of 56 T.  相似文献   

15.
Nanocrystalline Co2xNi0.5−xZn0.5−xFe2O4 (x=0−0.5) thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology as well as magnetic and microwave absorption properties of the films calcined at 1073 K were studied using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. All films were uniform without microcracks. The Co content in the Co-Ni-Zn films resulted in a grain size ranging from 15 to 32 nm while it ranged from 33 to 49 nm in the corresponding powders. Saturation and remnant magnetization increased with increase in grain size, while coercivity demonstrated a drop due to multidomain behavior of crystallites for a given value of x. Saturation magnetization increased and remnant magnetization had a maximum as a function of grain size independent of x. In turn, coercivity increased with x independent of grain size. Complex permittivity of the Co-Ni-Zn ferrite films was measured in the frequency range 2-15 GHz. The highest hysteretic heating rate in the temperature range 315-355 K was observed in CoFe2O4. The maximum absorption band shifted from 13 to 11 GHz as cobalt content increased from x=0.1 to 0.2.  相似文献   

16.
Semiconductor optoelectronic devices based on GaN and on InGaN or AlGaN alloys and superlattices can operate in a wide range of wavelengths, from far infrared to near ultraviolet region. The efficiency of these devices could be enhanced by shrinking the size and increasing the density of the semiconductor components. Nanostructured materials are natural candidates to fulfill these requirements. Here we use the density functional theory to study the electronic and structural properties of (10,0) GaN, AlN, AlxGa1 − xN nanotubes and GaN/AlxGa1 − xN heterojunctions, 0<x<1. The AlxGa1 − xN nanotubes exhibit direct band gaps for the whole range of Al compositions, with band gaps varying from 3.45 to 4.85 eV, and a negative band gap bowing coefficient of −0.14 eV. The GaN/AlxGa1 − xN nanotube heterojunctions show a type-I band alignment, with the valence band offsets showing a non-linear dependence with the Al content in the nanotube alloy. The results show the possibility of engineering the band gaps and band offsets of these III-nitrides nanotubes by alloying on the cation sites.  相似文献   

17.
Luminescence characteristics of Ca1−xSrxS:Ce (x = 0, 0.25, 0.50, 1) nanophosphors have been investigated. XRD of all the samples show a single cubic phase of Ca1−xSrxS:Ce. TEM micrographs exhibit the rod like structure of the samples with a decrease in diameter with decreasing amount of Ca. The results of TEM were found to be in good agreement with the XRD results. The photoluminescence spectrum comprises of a main peak in the range 480-510 nm with a shoulder in the range 530-565 nm, which may be ascribed to transitions from 5d-4f levels of cerium in the mixed host lattice. The red shift in the emission wavelength with increasing Ca content may be correlated with the change in crystal field of mixed host lattice for different Ca and Sr concentrations. We have also investigated TL response of Ca1−xSrx:Ce to 60Co-γ rays. All the samples with different Sr and Ca contents show different TL response. TL response for the sample with x = 0.75 shows the simplest TL glow curve with the maximum TL intensity, for which we have calculated the activation energy using glow curve deconvolution functions.  相似文献   

18.
BiFeO3/Zn1−xMnxO (x = 0-0.08) bilayered thin films were deposited on the SrRuO3/Pt/TiO2/SiO2/Si(1 0 0) substrates by radio frequency sputtering. A highly (1 1 0) orientation was induced for BiFeO3/Zn1−xMnxO. BiFeO3/Zn1−xMnxO thin films demonstrate diode-like and resistive hysteresis behavior. A remanent polarization in the range of 2Pr ∼ 121.0-130.6 μC/cm2 was measured for BiFeO3/Zn1−xMnxO. BiFeO3/Zn1−xMnxO (x = 0.04) bilayer exhibits a highest Ms value of 15.2 emu/cm3, owing to the presence of the magnetic Zn0.96Mn0.04O layer with an enhanced Ms value.  相似文献   

19.
The structural parameters and the energetics of the Ni2+xMn1−xGa alloys have been investigated by the first-principles Exact Muffin Tin Orbital-Coherent Potential Approximation (EMTO-CPA) for 0.10<x<0.30. The difference in total energies (δE) between the low-temperature tetragonal phase and the high-temperature cubic phase has been considered as a qualitative indicator of the martensitic transformation temperature Tm. The qualitative behavior of δE with variation of x has been found to be in agreement with the experimentally observed variation of Tm with x. The elastic constants for the entire range of x have also been calculated and the determination of a relationship between δE and the elastic shear modulus has been attempted. It is seen that δE varies linearly with elastic shear modulus C′, qualitatively similar to the relation between Tm and C′. The energetics calculated with the EMTO method agrees quite well with the all-electron full-potential results ensuring the accuracy of the method. These results show that the EMTO-CPA method is one of the most reliable and accurate first-principles methods, in the context of off-stoichiometric alloys which undergo martensitic phase transformations.  相似文献   

20.
Phase relationships, thermal expansion and electrical properties of Mg1 − xFexO (x = 0.1-0.45) cubic solid solutions and Fe3 − x − yMgxCryO4 ± δ (x = 0.7-0.95; y = 0 or 0.5) spinels were studied at 300-1770 K in the oxygen partial pressure range from 10 Pa to 21 kPa. Increasing iron content enlarges the spinel phase stability domain at reduced oxygen pressures and elevated temperatures. The total conductivity of the spinel ceramics is predominantly n-type electronic and is essentially p(O2)-independent within the stability domain. The computer simulations using molecular dynamics technique confirmed that overall level of ion diffusion remains low even at high temperatures close to the melting point. Temperature dependencies of the total conductivity in air exhibit a complex behavior associated with changing the dominant defect-chemistry mechanism from prevailing formation of the interstitial cations above 1370-1470 K to the generation of cation vacancies at lower temperatures, and with kinetically frozen cation redistribution in spinel lattice below 700-800 K. The average thermal expansion coefficients of the spinel ceramics calculated from dilatometric data in air vary in the range (9.6-10.0) × 10− 6 K− 1 at 300-500 K and (13.2-16.1) × 10− 6 K− 1 at 1050-1370 K. Mg1 − xFexO solid solutions undergo partial decomposition on heating under oxidizing and mildly reducing conditions, resulting in the segregation of spinel phase and conductivity decrease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号