首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国物理 B》2021,30(9):96102-096102
Ni–Zn ferrite and Bi_2O_3 composites were developed by the sol-gel method. The structural, magnetic, and dielectric properties were studied for all the prepared samples. X-ray diffraction(XRD) was performed to study the crystal structure.The results of field emission scanning electron microscopy(FE-SEM) showed that the addition of Bi_2O_3 can increase the grain size of the Ni–Zn ferrite. Magnetic properties were analyzed by a hysteresis loop test and it was found that the saturation magnetization and coercivity decreased with the increase of Bi_2O_3 ratio. In addition, the dielectric properties of the Ni–Zn ferrite were also improved with the addition of Bi_2O_3.  相似文献   

2.
Nickel zinc ferrites with generic formula, NiXZn1−XFe2O4 (with X=0.28-0.40) were synthesized by an oxalate precursor route starting with acetates to study their magnetic properties. The saturation magnetization versus temperature curves resemble those of R type ferrites. The system shows the presence of Yafet-Kittel type of spin. It is observed that magnetic moment (nB) values increase with the addition of Ni2+. The remanance ratio R tends to increase with the addition of Ni2+, which has been attributed to the increase of magnetocrystalline anisotropy constant (K1). The values of R compare well with the theoretical value (0.87). The coercive force (Hc) tends to increase with the addition of Ni2+, which has been related to the reverse domain formation. Studies on temperature variation of R and Hc reveal that these parameters are thermally insensitive, which confirms the presence of multi domain grains in the material. These observations have been supported by a.c. susceptibility studies.  相似文献   

3.
Mn-Zn ferrites doped with different contents of Y3+ ions were prepared by conventional two-step synthesis method. The microstructure and electromagnetic properties of the as-prepared Mn-Zn ferrites were investigated. It was found that all the samples consisted of ferrite phases of typical spinel cubic structure, and when Y3+ ion content was upto 1.5 mol%, yttriumirongarnet (Y3Fe5O12) phase with garnet structure was detected. With increasing doping content of Y3+ ions, the lattice constant and grain size increased, and after an increase to its maximum value, the sample apparent and relative densities dropped down. Through the analysis of magnetic properties, it was revealed that the saturation magnetization, and both the real and imaginary parts of permeability of the as-prepared samples raised with increasing doping content of Y3+ ions but decreased with more Y3+ ions, while their coercivity showed an opposite change trend; and the Curie temperature increased monotonously. The measurement of dielectric properties indicated that the dielectric constant of the doped Mn-Zn ferrites presented a rise with increasing Y3+ ion content, and dropped down gradually when more Y3+ ions were doped, while the dielectric loss tangent would decrease with Y3+ content upto 1.5 mol%, but after that, it increased.  相似文献   

4.
李颉  张怀武  李元勋  李强  秦军锋 《物理学报》2012,61(22):427-431
用固相法制备了镧掺杂M型钡铁氧体(Ba1--xLaxFel2O19,x=0.0-0.6),针对不同取代量与不同温度的烧结,研究取代量和温度对钡铁氧体微结构和磁性能的影响.在烧结温度为1100-1175℃,当X=0.0-0.6时,样品主要有单一的六角M型钡铁氧体相构成.SEM表明,La离子的加入不会影响钡铁氧体微观形貌.在磁性能方面,随着La离子的增加,钡铁氧体的饱和磁化强度先增加后减小,矫顽力逐渐增加.在同一取代量下,钡铁氧体的饱和磁化强度随烧结温度升高呈现上升趋势,矫顽力随着烧结温度的升高而降低.饱和磁化强度在x=0.2,烧结温度1175℃时达到最大值62.8emu/g,矫顽力在x=0.6,烧结温度1125℃时达到最大值3911.5Oe.  相似文献   

5.
(Pb0.5Ba0.5)ZrO3 (PBZ) and 1 mol% Mn-doped (Pb0.5Ba0.5)ZrO3 (Mn-PBZ) sol were successfully fabricated, and corresponding thin films were deposited on Pt(1 1 1)/TiO2/SiO2/Si(1 0 0) substrates by spin-coating method. Effects of Mn doping on the microstructure and electrical properties of PBZ thin films were investigated systemically. X-ray diffraction patterns showed that both films had a polycrystalline perovskite structure, and that the degree of (1 1 1) orientation were increased by Mn doping. Dielectric measurements illustrated that Mn-doped PBZ thin films not only had a larger dielectric constant, but also possessed a smaller dielectric loss. Accordingly, the tunability and the figure of merit of PBZ films were improved by Mn doping.  相似文献   

6.
Y2.6−xCa0.4+xZrxV0.2Fe4.8−xO12 (Zrx:YCaVIG) ferrite materials have been prepared by an oxide process. The phase formation and microstructure were analyzed by X-ray diffraction and scanning electron microscopy, respectively. The effects of Zr4+ substitution on phase compositions, sintering properties, microstructures and electromagnetic properties were investigated. The results indicate that all the sintered specimens with different Zr4+ contents show a single garnet structure. The addition of ZrO2 can gradually increase the lattice constant, and lower the sintering temperature and the theoretical density. With the increase of Zr4+ content, the dielectric loss (tan δε) and coercivity (Hc) decrease and then slightly increase, which is due to the variation of the microstructure. But the saturation magnetization (4πMs) shows the opposite variation compared to the former two properties. However, the dielectric constant (εr) remains stable and remanence (Br) monotonically declines. Finally, the specimen of Y2.3Ca0.7Zr0.3V0.2Fe4.5O12 sintered at 1350° possesses the optimum electromagnetic properties: εr=14.8, tan δε=1.35×10−3, 4πMs=1638 Gs, Br=596 Gs, Hc=0.75 Oe and ΔH (ferromagnetic resonance linewidth)=66 Oe.  相似文献   

7.
The dielectric and magnetic properties of Mg incorporated Ni-Zn spinel ferrites have been investigated. Ni0.5−xZn0.5MgxFe2O4 ferrites have been prepared by sol-gel auto-combustion technique. The as prepared ferrites were annealed at 673, 873 and 1073 K. The X-ray diffraction studies reveal the spinel structure of annealed ferrites. The TEM results are in agreement with XRD results. FTIR study has also been carried out to get insight into the structure of these ferrites. The dielectric measurements show that the dielectric constant (ε′), dielectric loss (tan δ) and conductivity (σac) increase on incorporation of Mg in the Ni-Zn ferrite. ε′, tan δ and σac also show dependence on temperature, frequency of external applied electric field and microstructure of the samples. The magnetic moment measurements reveal that the saturation magnetization (Ms) increases and coercivity (Hc) decreases with the increase in concentration of Mg2+ ions. Ms and Hc also show dependence on the annealing temperature.  相似文献   

8.
The effect of doping V on the electronic structure and magnetic properties of Mn3Al has been studied by density functional calculations. It is found that the V atoms for all the doped compounds prefer to enter into the B sites, and further they tend to enter into the (A, C) sites in Mn3Al. The calculations show that the alloys (Mn12−xVx)Al4 (x=0, 1, 2, 3, 4, 5, 6, 7) are ferrimagnetic whereas V2MnAl (x=8) is nonmagnetic. The compounds of x=0, 1, 2, 3, 4 exhibit the half-metallic character, and the compound of x=5 shows a nearly half-metallicity since the Fermi level slightly touches the valence bands. For x=6 and 7, the spin polarization is 59% and 69%, respectively. The reason is mainly attributed to the behavior of Mn(A,C)/V(A,C) atoms.  相似文献   

9.
Cu substituted Ni-Li spinel ferrites were prepared by a conventional sol-gel auto-combustion method. The structure, surface morphology, dielectric and magnetic properties were investigated by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, impedance spectroscopy and vibrating sample magnetometer, respectively. X-ray diffraction studies reveal the single phase spinel structure of the ferrites and the crystallite size varies from 23 to 35 nm. Incorporation of Cu in the Ni-Li ferrites increases the grain size. The dielectric parameters such as ε´, ε′′, loss tan δ and ac conductivity (σac) have been measured for the annealed samples in the temperature range from 35 to 200 °C and over the frequency range from 101 to 107 Hz. The saturation magnetization and coercivity show a dependence on the composition and microstructure. The values of saturation magnetization vary from 25.6 to 33.6 emu/g with increase in x for samples annealed at 600 °C. The values of the coercivity increase from 170 to 203 Oe with increase in x.  相似文献   

10.
Barium ferrites substituted by Mn-Sn, Co-Sn, and Mn-Co-Sn with general formulae BaFe12−2xMnxSnxO19 (x=0.2-1.0), BaFe12−2xCoxSnxO19 (x=0.2-0.8), and BaFe12−2xCox/2Mnx/2SnxO19 (x=0.1-0.6), respectively, have been prepared by a previously reported co-precipitation method. The efficiency of the method was refined by lowering the reaction temperature and shortening the required reaction time, due to which crystallinity improved and the value of saturated magnetization increased as well. Low coercivity temperature coefficients, which are adjustable by doping, were achieved by Mn-Sn and Mn-Co-Sn doping. Synthesis efficiency and the effect of doping are discussed taking into account accumulated data concerning the synthesis and crystal structure of ferrites.  相似文献   

11.
Magnesium doping in hierarchical zinc oxide nanostructures has been carried out using an aqueous method. The XRD results confirmed the hexagonal wurtzite structure for the magnesium doped zinc oxide nanoparticles. On doping with Mg2+, there is a change in morphology of the hierarchical nanostructures to nanorods. The optical absorption and photoluminescence properties of the nanostructures depend on the magnesium doping level. A blue shift of the band gap absorption and the near band edge emission is observed on Mg doping.  相似文献   

12.
ABSTRACT

Nanocrystalline Ni0.4Cu0.3Zn0.3Fe2O4 ferrites doped with TiO2 (0–10?wt %) were prepared by the sol-gel method. Elastic properties of synthesized samples were studied with the help of ultrasonic pulse transmission method. The elastic constants initially increase with an increase in TiO2 up to 1?wt % and then decline. LCR-Q meter was used to study the dielectric properties within 50?Hz to 5?MHz range of the frequency. The dielectric constant (?′) and dielectric loss tangents were decreased continuously with increased frequency for all the selected samples at room temperature revealing normal dielectric behavior of ferrites. Also, the AC conductivity was increased with an increase in the frequency for all the selected samples. Cole-Cole plots were obtained for all investigated samples and showed single semicircle which indicates that the electrical conduction process appears only due to grain boundaries.  相似文献   

13.
徐芳  白洋  艾芬  乔利杰 《中国物理 B》2008,17(12):4652-4655
The magnetic and dielectric properties of Sr-substituted Zn2-Y hexagonal ferrites (Ba2-x SrxZn2Fe12O22, 1.0 〈 x ≤ 1.5) are studied in this paper. Sr substitution will lead to the variation of cation occupation, which influences both the magnetic and electric properties. As Sr content x rises from 1.0 to 1.5, magnetic hysteresis loop gets wider gradually and the permeability drops rapidly due to the transformation from ferrimagnetic to antiferromagnetic phase. Moreover, permittivity rises with increasing Sr content. Under a certain external magnetic field, the phase transition of helical spin structure of Ba0.5Srl.5Zn2Fe12O22 at about 295 K seems to open a possibility for the room-temperature ferroelectricity induced by magnetic field. But its low resistivity prevents the observation of ferroelectric and magnetoelectric properties at room-temperature.  相似文献   

14.
The electronic structure and magnetic properties of Co-doped Heusler alloys (Mn1−xCox)2 VGa (x=0.0, 0.25, 0.5, 0.75, 1.0) have been studied by first-principles calculations. The results show that the lattice constants decrease with increasing Co content except x=1.0. The spin polarization for x=0.5 is only 34%, much lower than the other concentrations. The compounds of x=0.0, 0.25 show nearly half-metallicity because the Fermi level slightly touches the valence bands. And the compounds of x=0.75, 1.0 exhibit the half-metallic character with 100% spin polarization. It is found the local moments of Mn(Co) basically show a linear increasing trend while the moments of V show a linear decreasing trend with increasing doping concentration. However, the local moments for x=0.5 quite depart from the linear trend. The majority-spin component at the Fermi level increases while the minority-spin component at the Fermi level decreases with the substitution of Co atoms for Mn atoms when x≤0.75. For x≥0.75, the majority-spin component remains more or less the same and the gap in the minority DOS increases with Co doping. The majority spin states are shifted to valence bands and the majority spin states around EF increase due to a leakage of charge from the unoccupied spin-up states to the occupied majority states with increasing Co content.  相似文献   

15.
Ni0.6Zn0.4Fe2O4 ferrite nano-particles with a crystallite size of about 20 nm were prepared by the conventional hydrothermal method, followed by annealing in a microwave oven for 7.5-15 min. The microstructure and magnetic properties of the samples were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and vibrating sample magnetometry. The microwave annealing process has slight effect on the morphology and size of Ni0.6Zn0.4Fe2O4 ferrite nano-particles. However it reduces the lattice parameter and enhances the densification of the particles, and then greatly increases the saturation magnetization (50-56 emu/g) and coercive force of the samples as compared to the non-annealing condition. The microwave annealing process is an effective way to rapidly synthesize high performance ferrite nano-particle.  相似文献   

16.
The crystalline structure and magnetic properties of M-type barium ferrite doped with small amounts of MnO2 (0, 0.25, 0.5, 0.75, 1.0, 1.5, and 2.0 wt%, respectively) have been investigated by means of XRD, SEM and VSM. The results show that the crystalline structures of barium ferrite are still M-type hexagonal structure and Mn ions are distributed homogeneously in both the grains and the grain boundaries. The saturation magnetization and magnetocrystalline anisotropy constants both reach the highest values when x=0.75 wt%. The displacement of Fe ions from 4f1 to 2b site is mainly responsible for the appearance of the maximum values.  相似文献   

17.
MgO was introduced into low-temperature sintered Z-type hexaferrites in order to improve their high-frequency electromagnetic properties. In the doped samples the major Z-type phase coexists with a small amount of W-type magnetoplumbite phase. The addition of MgO causes a decrease of the average grain size and an increase of the magnetocrystalline anisotropy (K1) and the saturation magnetization (Ms) with the increment of K1 being larger than that of Ms. These factors result in a reduce of the initial permeability. Also, the samples with MgO additive exhibit higher Q-factor and dc resistivity. Furthermore, the introduction of MgO can decrease the dielectric constant and improve the dielectric loss tangent of the samples by reducing the electronic transition in octahedral site (B-site) between Fe2+ and Fe3+ ions.  相似文献   

18.
Microstructure and magnetic properties of Sn-substituted MnZn ferrites   总被引:1,自引:0,他引:1  
Sn-substituted MnZn ferrites were prepared by conventional oxide ceramic process. The influences of Sn substitution on microstructure and magnetic properties of MnZn ferrites were investigated. The results indicated that with increase of Sn substitute concentration, the diffraction peaks shifted slightly towards the lower angles and the lattice parameter (a) increased. And at room temperature, the bulk density (dm), initial permeability (μi), saturation magnetic induction (Bs) and electrical resistivity (ρ) of Sn-substituted MnZn ferrites all increased initially and then decreased with the further increase of Sn substitute concentration, while the power losses decreased first and then increased subsequently. Meanwhile, the temperature of secondary maximum peak of μi-T curve and the minimum losses moved to lower temperature while the Sn substitute concentration increased. When the content of Sn substitution was 0.3 mol%, at room temperature, the initial permeability, saturation magnetic induction, density and electrical resistivity reached their maxima, while the hysteresis loss (Ph), eddy current loss (Pe) and total losses (Pcv) achieved their minima. The PhT and μi-T curves varied contrarily, and due to the contribution of extra eddy current loss (Pe,exc) that was proportional to Ph, the Pe-T curve did not agree with its classical expression. Finally, MnZn ferrite substituted with 0.3 mol% SnO2 shows the highest initial permeability (3894) and lowest losses (303 kW/m3) at room temperature.  相似文献   

19.
The new spinel-type of general formula Ni0.6+xZn0.2Cu0.2VxFe2−2xO4 with 0.0≤x≤0.25 was synthesized by the usual ceramic method. Structure of the prepared ferrites was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). Room temperature magnetic hysteresis loops were measured using magnetic field strength up to 6 kOe. Saturation magnetization (Ms) increased with vanadium content up to x=0.05 and then decreased. Variation of (Ms) as a function of x is explained in terms of cation redistribution between A and B sublattices. Coercive force (Hc), remanent induction (Br) and squareness of the hysteresis loop (Br/Ms) as functions of x are presented. Dielectric permittivity (ε′, ε″) and dielectric loss tangent (tan δ) were measured as functions of frequency and temperature. These parameters were found to be strongly dependent on V2O5 concentration. The variation of dielectric loss tangent with frequency at different temperatures shows abnormal behavior, where more than one relaxation peaks were observed at low and high temperatures. This behavior could be attributed to the collective contribution of two types of carriers (p and n) to polarization.  相似文献   

20.
Li0.5−x/2CuxFe2.5−x/2O4 (where x=0.0-1.0) ferrites have been prepared by solid-state reaction. X-ray diffraction was used to study the structure of the above investigated ferrites at various sintering temperatures. Samples were sintered at 1000, 1100 and 1200 °C for 3 h in the atmosphere. For the sintering temperature of 1000 °C, Li0.5−x/2CuxFe2.5−x/2O4 undergoes cubic to tetragonal transformation for higher Cu content. However, for the sintering temperature of 1100 and 1200 °C, X-ray diffraction patterns are mainly characterized by fcc structure, though presence of tetragonal distortion was found by other temperature dependence of initial permeability curves. The lattice parameter, X-ray density and bulk density were calculated for different compositions. Curie temperature was measured from the temperature dependence of initial permeability curves. Curie temperatures of Li-Cu mixed ferrites were found to decrease with the increase in Cu2+ content due to the reduction of A-B interaction. As mentioned earlier, temperature dependence of initial permeability curves was characterized by tetragonal deformation for the samples containing higher at% of Cu. The complex initial permeability has been studied for different samples. The B-H loops were measured at constant frequency, f=1200 Hz, at room temperature (298 K). Coercivity and hysteresis loss were estimated for different Cu contents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号