首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The synthesis of the ruthenium stanna-closo-dodecaborate complex [Bu(3)MeN](2)[Ru(dppb)(MeCN)(2)(SnB(11)H(11))(2)] by an unprecedented, reversible eta(3)(B-H) to eta(1)(Sn) rearrangement of [Bu(3)MeN](2)[Ru(dppb)(SnB(11)H(11))(2)] is described and the product is characterized by multinuclear NMR spectroscopy and single-crystal X-ray diffraction.  相似文献   

2.
The cationic rare earth metal aminobenzyl complexes bearing mono(pyrrolyl) ligands are synthesised and structurally characterised, and the coordination mode of the pyrrolyl ligands is found to show significant influence on the polymerisation of styrene.  相似文献   

3.
Rare examples of (mu-eta2:eta2-disulfido)dicopper complexes have been prepared from Cu(I) and Cu(II) complexes of beta-diketiminate and anilido-imine supporting ligands. A novel byproduct derived from sulfur functionalization of the methine position of a beta-diketiminate ligand was identified. DFT calculations on [(LCu)2X2] (L = beta-diketiminate, X = O or S) complexes rationalize the absence of a bis(mu-sulfido)dicopper isomer, [Cu2(mu-S)2](2+), in the synthetic reactions, yet predict that a [Cu2(mu-S)2](0) core is a stable product of 2-electron reduction of the [Cu2(mu-eta2:eta2-S2)](2+) unit. Exchange of the disulfido ligand was discovered upon reaction of a (mu-eta2:eta2-disulfido)dicopper complex with a Cu(I) reagent.  相似文献   

4.
Activation of elemental sulfur by the monovalent nickel complex [PhTt (tBu)]Ni(CO) [PhTt(tBu)=phenyl{tris[(tert-butylmethyl)thio]methyl}borate] generates the disulfidodinickel(II) complex 2. This species is alternatively accessible via thermal decomposition of [PhTt (tBu)]Ni(SCPh3). Spectroscopic, magnetic, and X-ray diffraction studies establish that 2 contains a mu-eta(2):eta(2)-S2 ligand that fosters antiferromagnetic exchange coupling between the Ni (II) ions. This observation is in contrast to the lighter congener, oxygen, which strongly favors the bis(mu-oxo)dinickel(III) structure. 2 oxidizes PPh 3 to SPPh3 and reacts with O2, generating several products, one of which has been identified as [(PhTt (tBu))Ni]2(mu-S) (3).  相似文献   

5.
[formula: see text] A unique class of simplified phorbol ester analogues is described for the first time. A highly efficient retro-annelation sequence was developed in order to remove the five-membered ring from the phorbol diterpene core, allowing access to BCD ring analogues of the phorbol esters. The binding of these analogues to protein kinase C (PKC) and the truncated peptide eta PKC-C1B (eta PKC-CRD2) is also reported.  相似文献   

6.
The activation of dioxygen (O(2)) by Cu(I) complexes is an important process in biological systems and industrial applications. In tyrosinase, a binuclear copper enzyme, a mu-eta(2):eta(2)-peroxodicopper(II) species is accepted generally to be the active oxidant. Reported here is the characterization and reactivity of a mu-eta(2):eta(2)-peroxodicopper(II) complex synthesized by reacting the Cu(I) complex of the secondary diamine ligand N,N'-di-tert-butyl-ethylenediamine (DBED), [(DBED)Cu(MeCN)](X) (1.X, X = CF(3)SO(3)(-), CH(3)SO(3)(-), SbF(6)(-), BF(4)(-)), with O(2) at 193 K to give [[Cu(DBED)](2)(O(2))](X)(2) (2.X(2)). The UV-vis and resonance Raman spectroscopic features of 2 vary with the counteranion employed yet are invariant with change of solvent. These results implicate an intimate interaction of the counteranions with the Cu(2)O(2) core. Such interactions are supported further by extended X-ray absorption fine structure (EXAFS) analyses of solutions that reveal weak copper-counteranion interactions. The accessibility of the Cu(2)O(2) core to exogenous ligands such as these counteranions is manifest further in the reactivity of 2 with externally added substrates. Most notable is the hydroxylation reactivity with phenolates to give catechol and quinone products. Thus the strategy of using simple bidentate ligands at low temperatures provides not only spectroscopic models of tyrosinase but also functional models.  相似文献   

7.
The activation of dioxygen (O(2)) by Cu(I) complexes is an ubiquitous process in biology and industrial applications. In tyrosinase, a binuclear copper enzyme, a mu-eta(2):eta(2)-peroxodicopper(II) species is generally accepted to be the active oxidant. Reported here is the characterization and reactivity of a stable mu-eta(2):eta(2)-peroxodicopper(II) complex at -80 degrees C using a secondary diamine ligand, N,N'-di-tert-butyl-ethylenediamine (DBED). The spectroscopic characteristics of this complex (UV-vis, resonance Raman) prove to be strongly dependent on the counteranion employed and not on the solvent, suggesting an intimate interaction of the counteranions with the Cu-O(2) cores. This interaction is also supported by solution EXAFS data. This new complex exhibits hydroxylation reactivity by converting phenolates to catechols, proving to be a functional model of tyrosinase. Additional interest in this Cu/O(2) species results from the use of Cu(I)-DBED as a polymerization catalyst of phenols to polyphenylene oxide (PPO) with O(2) as the terminal oxidant.  相似文献   

8.
Representative members of a new family of covalently bonded charge-transfer molecular hybrids, of general formula [(eta5-C5H5)Fe(mu,eta6:eta1-p-RC6H4NN)Mo(eta2-S2CNEt2)3] +PF6- (R: H, 5+PF6-; Me, 6+PF6-; MeO, 7+PF6-) and [(eta5-C5Me5)Fe(mu,eta6:eta1-C6H5NN)Mo(eta2-S2CNEt2)3]+PF6-, 8+PF6-, have been synthesized by reaction of the corresponding mixed-sandwich organometallic hydrazines [(eta5-C5H5)Fe(eta6-p-RC6H4NHNH2)]+PF6- (R: H, 1+PF6-; Me, 2+PF6-; MeO, 3+PF6-) and [(eta5-C5Me5)Fe(eta6-C6H5NHNH2)]+PF6-, 4+PF6-, with cis-dioxomolybdenum(VI) bis(diethyldithiocarbamato) complex, [MoO2(S2CNEt2)2], in the presence of sodium diethyldithiocarbamato trihydrate, NaSC(=S)NEt2.3H2O, in refluxing methanol. These iron-molybdenum complexes consist of organometallic and inorganic fragments linked each other through a pi-conjugated aryldiazenido bridge coordinated in eta6 and eta1 modes, respectively. These complexes were fully characterized by FT-IR, UV-visible, and 1H NMR spectroscopies and, in the case of complex 7+PF6-, by single-crystal X-ray diffraction analysis. Likewise, the electrochemical and solvatochromic properties were studied by cyclic voltammetry and UV-visible spectroscopy, respectively. The electronic spectra of these hybrids show an absorption band in the 462-489 and 447-470 nm regions in CH2Cl2 and DMSO, respectively, indicating the existence of a charge-transfer transition from the inorganic donor to the organometallic acceptor fragments through the aryldiazenido spacer. A rationalization of the properties of 5+PF6--8+PF6- is provided through DFT calculations on a simplified model of 7+PF6-. Besides the heterodinuclear complexes 5+PF6--8+PF6-, the mononuclear molybdenum diazenido derivatives, [(eta1-p-RC6H4NN)Mo(eta2-S2CNEt2)3] (R: H, 9; Me, 10; MeO, 11), resulting from the decoordination of the [(eta5-C5H5)Fe]+ moiety of complexes 5+PF6--7+PF6-, were also isolated. For comparative studies, the crystalline and molecular structure of complex 10.Et2O was also determined by X-ray diffraction analysis and its electronic structure computed.  相似文献   

9.
Four stanna-closo-dodecaborate complexes of ruthenium have been prepared and characterized by multinuclear NMR studies in solution and in the solid state. The solid-state structures of the dimeric zwitterions [[Ru(dppb)(SnB11H11)]2] (2) (dppb = bis(diphenylphosphino)butane), [[Ru(PPh3)2(SnB11H11)]2] (3), and the dianionic ruthenium complex [Bu3MeN]2[Ru(dppb)[2,7,8-(mu-H)3-exo-SnB11H11](SnB11H11)] (4) were determined by X-ray crystal structure analysis; they establish an unprecedented structural motif in the chemistry of heteroboranes and transition-metal fragments with the stanna-closo-dodecaborate moiety as a two-faced ligand that exhibits eta1(Sn) as well as eta3(B-H) coordination. The eta3-coordinated stannaborate in 4 and in the isostructural compound [Bu3MeN]2[Ru(PPh3)2[2,7,8-(mu-H)3-exo-SnB11H11](SnB11H11)] (5) shows fluxional behavior, which was studied in detail by using 31P[1H] EXSY and DNMR experiments. The activation parameters for the dynamic process of 5 are given.  相似文献   

10.
The formation of the Tm(III) complex with 1-(2-pyridylazo)-2-naphthol (PAN or HL) in aqueous-methanol mixtures (50 and 75%v/v) was studied by a spectrophotometric method. The equilibrium constant for the complexing reaction and the stability constant of the complex TmL 2+ were calculated. The solvent extraction of Tm(III) byPAN in carbon tetrachloride from aqueous and aqueous-methanol phase was investigated. The extraction equilibrium constants and two-phase stability constants for the TmL 3 and the TmL 3(MeOH)3 complexes were evaluated. It was confirmed that the addition of methanol to the aqueous phase (above 25%v/v) causes a synergistic effect.
Extraktion von Ionen der Seltenerdmetalle mit 1-(2-Pyridylazo)-2-naphthol (PAN), 5. Mitt.: Komplexbildung und Gleichgewichtsverteilung von Thulium (III) mitPAN
Zusammenfassung Die Bildung des Komplexes von Tm(III) mit 1-(2-Pyridylazo)-2-naphthol (PAN oder HL) in Wasser-Methanol Mischungen (50 und 75%v/v) wurde mit einer spektrophotometrischen Methode untersucht. Die Gleichgewichtskonstante für die Reaktion der Komplexbildung und die Stabilitätskonstante des Komplexes TmL 2+ wurden berechnet. Die Extraktion von Tm(III) mittelsPAN in Kohlenstofftetrachlorid aus Wasser oder Wasser-Methanol wurde untersucht. Die Werte der Extraktionsgleichgewichtskonstante sowie der zweiphasigen Beständigkeitskonstante für die Komplexe TmL 3 und TmL 3(MeOH)3 wurden berechnet. Es wurde festgestellt, daß die Zugabe von Methanol zur wäßrigen Phase (25%v/v) einen synergistischen Effekt hat.
  相似文献   

11.
The solvent extraction of Yb(III) and Ho(III) by 1-(2-pyridylazo)-2-naphthol (PAN or HL) in carbon tetrachloride from aqueous-methanol phase has been studied as a function ofpH × and the concentration ofPAN or methanol (MeOH) in the organic phase. When the aqueous phase contains above ~25%v/v of methanol the synergistic effect was increased. The equation for the extraction reaction has been suggested as: $$\begin{gathered} Ln(H_2 0)_{m(p)}^{3 + } + 3 HL_{(o)} + t MeOH_{(o)} \mathop \rightleftharpoons \limits^{K_{ex} } \hfill \\ LnL_3 (MeOH)_{t(o)} + 3 H_{(p)}^ + + m H_2 0 \hfill \\ \end{gathered} $$ where:Ln 3+=Yb, Ho; $$\begin{gathered} t = 3 for C_{MeOH in.} \varepsilon \left( { \sim 25 - 50} \right)\% {\upsilon \mathord{\left/ {\vphantom {\upsilon \upsilon }} \right. \kern-\nulldelimiterspace} \upsilon }; \hfill \\ t = 0 for C_{MeOH in.} \varepsilon \left( { \sim 5 - 25} \right)\% {\upsilon \mathord{\left/ {\vphantom {\upsilon \upsilon }} \right. \kern-\nulldelimiterspace} \upsilon } \hfill \\ \end{gathered} $$ . The extraction equilibrium constants (K ex ) and the two-phase stability constants (β 3 × ) for theLnL 3(MeOH)3 complexes have been evaluated.  相似文献   

12.
Extraction of lutetium(III) and erbium(III) with 1-(2-pyridylazo)-2-naphthol (PAN or HL) in carbon tetrachloride from aqueous solutions was examined. The composition of the complex extracted was determined and it was found that the extraction process can be described by the following equation (Ln 3+=Lu, Er): $$Ln(H_2 O)_m^{3 + } + 3 HL_{(0)} \mathop \rightleftharpoons \limits^{K_{ex} } LnL_{3(0)} + 3 H^ + + mH_2 O$$ The extraction constants (K ex ) and two-phase stability constants (β 3 x ) forLnL 3 complexes have been evaluated.  相似文献   

13.
14.
The solvent extraction of Yb(III) by 1-(2-pyridylazo)-2-naphthol (PAN or HL) in carbon tetrachloride from aqueous—ethanol phase has been investigated as a function of thepH X of the polar phase and the concentrations ofPAN or ethanol (EtOH) in the organic phase. It was confirmed that the addition of ethanol to the aqueous phase causes an increase of the Yb(III) distribution coefficient. The equation for the extraction reaction has been suggested as: $$Yb(H_2 O)_{m(^p )}^{3 + } + 3H L_{(o)} + t Et OH_{(o)} \rightleftharpoons Yb L_3 \left( {EtOH} \right)_{t(o)} + 3H_{(^p )}^ + + mH_2 O$$ wheret changes from 0 to 3. The extraction equilibrium constant (K ex ) and two-phase stability constants (β 3 × ) for the YbL 3 (EtOH)3 complex have been evaluated. The formation of solvates YbL 3 (EtOH) t is probably the main reason of the synergistic effect which was observed.  相似文献   

15.
Silylation of a dinuclear tantalum complex containing a side-on end-on coordinated dinitrogen ligand initiates a sequence of reactions ultimately leading to a bis(micro-imido) structure. DFT is employed to determine the energetics of the entire reaction cascade. Particular emphasis is put on the unprecedented N-N cleavage reaction of the functionalized, micro-eta1:eta2 coordinated dinitrogen ligand. A mechanism for this reaction is derived theoretically and the corresponding transition state is determined.  相似文献   

16.
The hydrazone (E)-3-hydroxy-N’-(1-(2-oxo-2H-chromen-3-yl)ethylidene)-2-naphthohydrazide (H2L) was synthesized from the reaction of 3-acetylcoumarin and 3-hydroxy-2-naphthoic hydrazide in methanol. Compounds [Mn(H2L)(NO3)2(CH3OH)]·CH3OH (1a), [Mn(HL)(NO3)(CH3OH)]n (1b), [Co(HL)(NO3)(CH3OH)]n (2), and [Cu(HL)(NO3)] (3) were obtained by reaction of an equimolar amount of H2L with nitrate salts of Mn(II), Co(II), or Cu(II) in methanol. The reaction of ligand and Mn(NO3)2·4H2O was also carried out in the presence of sodium azide which led to the 1-D coordination polymer, [Mn(HL)(N3)(CH3OH)]n (4). All of the synthesized compounds were characterized by elemental analyses and spectroscopic methods. Single-crystal X-ray analysis of 1–4 indicated that H2L is neutral (in 1a) or mononegative ligand (in 1b, 2, 3 and 4). In 1b, 2 and 4 the 1-D polymeric chain is found by a rare coordination mode of this kind of hydrazone ligand since the naphtholic oxygen is coordinated to the neighboring metal ions while the NH moiety of hydrazone remains intact, also confirmed by FT-IR spectroscopic studies. The thermal stability of 2 and 4 were also studied from 30–1000 °C.  相似文献   

17.
(C5Me5R)2Ta2Cl4 (d2-d2) disproportionates under dinitrogen to [(C5Me4R)TaCl2]2(mu-N2) and the D3h cluster cation (C5Me4R)3Ta3(mu-Cl)6+ with anionic (C5Me4R)TaCl4-.  相似文献   

18.
19.
Crystals of (NaLa(2))NaPtO(6) were grown in an acidic ("wet") NaOH flux. (NaLa(2))NaPtO(6) forms in a 2H-perovskite related structure type and contains mixed cation (Na/La) occupancy on the A-site. The crystal was a rhombohedral obverse-reverse twin, and it crystallizes in the space group R3c (hexagonal setting) with lattice parameters of a = 9.5031(2) A and c = 11.4625(5) A. (NaLa(2))NaPtO(6) is the first example of an m = 0, n = 1 (A(3)A'BO(6)) member of the A(3n)+3m)A'(n)B(3m+n)O(9m+6n) family of oxides where either a lanthanide or a sodium cation occupies the A-site.  相似文献   

20.
The unprecedented template action of ytterbium ion in the synthesis of pentaaza macrocyclic Schiff bases is exemplified by isolation and definitive identification of the seven-coordinate pentagonal bipyramidal complex with the formula of [YbLCl(2)]ClO(4) (1), where L is 2,14-dimethyl-3,6,10,13,19-pentaazabicyclo[13.3.1]nonadeca-1(19),2,13,15,17-pentaene, providing the first example of crystallographically characterized pentaaza macrocyclic ytterbium complex. For the first time the spectrum of the (2)F(7/2) --> (2)F(5/2) transition has been obtained for a molecular complex of ytterbium with organic ligands in which all ligand-field components of the ground and excited state are well displayed at room temperature. This complex is capable of forming a dimeric peroxo Yb(2)(mu-eta(2):eta(2)-O(2))L(2)(4+) (2) derivative containing the biologically significant planar side-on doubly bidentate coordination mode of the peroxide. Inclusion of the appropriate solvent molecule into the crystal structure generates supramolecular architectures (2a-d) in which the solvent controlled self-assembly is observed. Spectral properties of these complexes were found to be very important and promising in the area of ytterbium physicochemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号