首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Schiff base mixed-ligand copper complexes [CuL1(phen)Cl2], [CuL1(bipy)Cl2], [Cu(L1)2Cl2], [Cu(L2)2Cl2], [CuL2(bipy)Cl2], and [CuL2(phen)Cl2] (where L1?=?4-[3,4-dimethoxy-benzylidene]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazole-3-one; L2?=?4-[3-hydroxy-4-nitro-benzylidene]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazole-3-one; phen?=?1,10-phenanthroline; and bipy?=?2,2′-bipyridine) have been synthesized and characterized. Their DNA-binding properties have been studied by electronic absorption spectra, viscosity, and electrochemical measurements. The absorption spectral and viscosity results suggest that the copper(II) complexes bind to DNA via partial intercalation. The addition of DNA resulting in the decrease of the peak current of the copper(II) complexes indicates their interaction. Interaction between the complexes and DNA has also been investigated by submarine gel electrophoresis. The copper complexes cleave supercoiled pUC19 DNA to nicked and linear forms through hydroxyl radical and singlet oxygen in the presence of 3-mercaptopropionic acid as the reducing agent. These copper complexes promote the photocleavage of pUC19 DNA under irradiation at 360?nm. Mechanistic study reveals that singlet oxygen is likely to be the reactive species responsible for the cleavage of plasmid DNA by the synthesized complexes. The in vitro antimicrobial study indicates that the metal chelates have higher activity against the bacterial and fungal strains than the free ligands.  相似文献   

2.
Ruthenium(II) nitrosyl complexes with polypyrazolylmethanes, [(Bpm)Ru(NO)Cl3] [Bpm = bis(1-pyrazolyl)methane, 1], [(Bpm)Ru(NO)Cl3] [Bpm = bis(3,5-dimethyl-1-pyrazolyl)methane, 2], [(Tpm)Ru(NO)Cl2][PF6] [Tpm = tris(1-pyrazolyl)methane, 3], and [(Tpm)Ru(NO)Cl2][PF6] [Tpm = tris(3,5-dimethyl-1-pyrazolyl)methane, 4], have been synthesized and characterized. The solid-state structures of [(Bpm)Ru(NO)Cl3] (2) and [(Tpm)Ru(NO)Cl2][PF6] (4) were determined by single-crystal X-ray crystallographic analyses. These complexes have been tested as catalysts in the transfer hydrogenation of several ketones under mild conditions.  相似文献   

3.
Two novel amino acids imine ligands (H2L1 and H2L2) have been synthesized using green condensation reaction from 2‐[3‐Amino‐5‐(2‐hydroxy‐phenyl)‐5‐methyl‐1,5‐dihydro‐[1, 2, 4]triazol‐4‐yl]‐3‐(1H‐indol‐3‐yl)‐propionic acid with benzaldehyde/p‐flouro benzaldehyde (1:1 molar ratio) in the presence of lemon juice as a natural acidic catalyst in aqueous medium. Their transition metal complexes have been prepared in a molar ratio (1:1). Characterization of the ligands and complexes using elemental analysis, spectroscopic studies, 1HNMR, 13CNMR, and thermal analysis has been reported. E*, ΔH*, ΔS* and ΔG* thermodynamic parameters, were calculated to throw more light on the nature of changes accompanying the thermal decomposition process of these complexes. The molar conductance measurement of metal complexes showed nonelectrolyte behavior. The metal complexes of the two ligands have tetrahedral geometry with a general molecular structure [M(H2L)Xn], where [(M = Mn (II), Co (II), Cu (II) and Zn (II), X = Cl, n = 2]; M = VO (II), X = SO4, n = 1] for H2L1. [M = Co (II), Cu (II), Zn (II)] for H2L2. Antibacterial activity of the complexes against (Bacillis subtilis, Micrococcus luteus, Escherichia coli), also antifungal activity against (Aspergillus niger, Candida Glabarta, Saccharomyces cerevisiae) have been screened. The results showed that all complexes have antimicrobial activity higher than free ligands. Molecular docking studies results showed that, all the synthesized compounds having minimum binding energy and have good affinity toward the active pocket, thus, they may be considered as good inhibitor of targeting PDB code: 1SC7 (Human DNA Topo‐isomerase I).  相似文献   

4.
The reactions of AuIII, PtII and PdII complexes with 2-pyridinecarboxaldehyde (2CHO-py) have been examined in protic (H2O, MeOH, EtOH) and aprotic (DMF, CH2Cl2) solvents. Compounds in which the pyridine ligand is N-coordinated, either in the original aldehydic form or in a new form derived from addition of one or two protic molecules, have been isolated, namely: [Au(2CHO-py · H2O)Cl3], [Au(2CHO-py · MeOH)Cl3], [Au(2CHO-py · 2EtOH)Cl3], cis-[Pt(2CHO-py)2Cl2], trans-[Pd(2CHO-py)2Cl2], trans-[Pt(dmso)(2CHO-py)Cl2], [Pt{C5H4N-(CH2SMe)}Cl(2CHO-py)](ClO4), [Pt(terpy)(2CHOpy)](ClO4)2, [Pt(terpy)(2CHO-py · H2O)](ClO4)2 (terpy = 2,2′:6′,2′′-terpyridine). 1H-n.m.r. experiments show that the addition of the protic molecule(s) to the PtII and PdII complexes is reversible. The effects of the nature of the metal ion and the ancillary ligands as well as of the total charge of the complexes on the relative stability of the addition products are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Thermal decomposition of Ni(II), Pd(II), and Pt(II) complexes of N-pyrimidin-2ylthiourea (AllPmTu) have been studied by TG, DTG, and DTA and by electron impact (EI) mass spectra. The complexes have the molecular formulae as [Ni(AllPmTu)Cl2(H2O)], [Ni(AllPmTu)2Cl2(H2O)2], and [M(AllPmTu)Cl2], where M = PdII or PtII, and [Pt(AllPmTu)2]. The TG curves show that Ni(II) complexes decompose in three stages to yield NiO as a residue, while Pd(II) and Pt(II) decompose in two stages to yield MS residues. The initial mass losses correspond to elimination of allylamine for Pd(II) and Pt(II) complexes but, allyisothiocyanate for both Ni(II) complexes revealing that sulfur atom of thiourea part is involved in coordination to Pd(II) and Pt(II) but does not to Ni(II). Kinetic parameters (E #, n, ΔH #, ΔS #, ΔG #) of the decomposition stages are determined and correlated with bonding and structural properties of the complexes. The EI mass spectra of the complexes show fragments corresponding to the evolved and intermediate species.  相似文献   

6.
A 3,5-dichlorosalicylaldehyde-N4-cyclohexylthiosemicarbazone (C14H16Cl2N3OS) and its complexes [Zn(dsct)(phen)]·DMF ( 1 ), [Zn(dsct)(bipy)]·DMF ( 2 ), [Cu(dsct)(bipy)]·DMF ( 3 ) (phen = 1,10-phenathroline, bipy = 2,2’bipyridine) were synthesized and characterized by CHN analysis, FT-IR, UV–vis and NMR spectra. The molecular structure of the thiosemicarbazone (H2dsct) and its complexes have been resolved using single crystal XRD studies. In the complexes, thiosemicarbazone exist in the thioiminolate form and acts as dideprotonated tridentate ligand coordinating through phenolic oxygen, thioiminolate sulfur and azomethine nitrogen. The antibacterial activity of the prepared compounds were screened against Escherichia coli, Salmonella typhi, Enterobacter aerogenes, Shigella dysentriae, Bacillus cereus, Staphylococcus aureus. All the complexes showed activity against bacterial strains E.coli and Salmonella typhi. The thiosemicarbazone showed activity against three bacterial strains such as E. coli, Enterobacter aerogenes and Shigella dysentriae. Complex 2 showed very good antibacterial activity as compared to standard drug (Ampicillin) against the bacterial strain, Salmonella typhi. Finally, the thiosemicarbazone and its complexes have been used to accomplish molecular docking studies against an Epidermal Growth Factor Receptor (EGFR) and breast cancer mutant 3hb5-oxidoreductase to determine the most preferred mode of interaction. The results confirm that the complex [Cu (dsct)(bipy)]·DMF( 3 ) showed the highest docking score as compared to other complexes under study. The [Cu(dsct)(bipy)]·DMF( 3 ) complex was evaluated for their anticancer activities against breast cancer cell line (MCF-7) and normal L929 (Mouse Fibroblast) cell line. It was found that the compound showed an LC50 of 6.25 μg/mL against breast cancer cell line (MCF-7).  相似文献   

7.
Synthetic procedures are described that allow access to the new complexes cis-[Mo2O5(apc)2], cis-[WO2(apc)2], trans-[UO2(apc)2], [Ru(apc)2(H2O)2], [Ru(PPh3)2(apc)2], [Rh(apc)3], [Rh(PPh3)2(apc)2]ClO4, [M(apc)2], [M(PPh3)2(apc)]Cl, [M(bpy)(apc)]Cl (M(II) = Pd, Pt), [Pd(bpy)(apc)Cl], [Ag(apc)(H2O)2] and [Ir(bpy)(Hapc)2]Cl3, where Hapc, is 3-aminopyrazine-2-carboxylic acid. These complexes were characterized by physico-chemical and spectroscopic techniques. Both Hapc and several of its complexes display significant anticancer activity against Ehrlich ascites tumour cells (EAC) in albino mice.  相似文献   

8.
A series of new binuclear Ru(III) complexes of the type {[RuX3(EPh3)]2(bis- β-dk)} [X = Cl/Br; E = P/As bis- β-dk = bis(β-diketone)] have been prepared by reacting [RuCl3(PPh3)3], [RuCl3(AsPh3)3], [RuBr3(PPh3)3], [RuBr3(AsPh3)3] with bis(β-diketones) in a 2:1 molar ratio in benzene. These complexes have been characterized by physico-chemical and spectroscopic methods. The redox property of the complexes were studied by cyclic voltammetric technique. The complexes were found to be effective catalysts for the aryl–aryl coupling and oxidation of benzyl alcohol, cyclohexanol, propan-1-ol and 2-methylpropanol to benzaldehyde, cyclohexanone, propionaldehyde and 2-methylpropionaldehyde, respectively, using molecular oxygen as primary oxidant. All the complexes have been screened for their antibacterial and antifungal activities.  相似文献   

9.
[Pd(L1)(C,N)]CF3SO3 and [Pd(L2)(C,N)]CF3SO3 (L1 = 2,2′ ‐bipyridine, L2 = 1,10‐phenanthroline and C,N = benzylamine) novel orthopalladated complexes have been synthesized and characterized using various techniques. The binding of the complexes with native calf thymus DNA (CT‐DNA) was monitored using UV–visible absorption spectrophotometry, fluorescence spectroscopy and thermal denaturation studies. Our results indicate that these complexes can strongly bind to CT‐DNA via partial intercalative mode. In addition, fluorescence spectrometry of bovine serum albumin (BSA) with the complexes shows that the fluorescence quenching mechanism of BSA is a static process. The results of site‐competitive replacement experiments with specific site markers clearly indicate that the complexes bind to site I of BSA. Notably, the complexes exhibit significant in vitro cytotoxicity against two human cancer cell lines (Jurkat and MCF‐7) with IC50 values varying from 37 to 53 μM. Finally, a molecular docking experiment effectively proves the binding of the Pd(II) complexes to DNA and BSA.  相似文献   

10.
Three new palladium complexes ([Pd(DABA)Cl2], [Pd(CPDA)Cl2], and [Pd(HZPY)Cl2]) bearing dinitrogen ligands (DABA: 3,4-diaminobenzoic acid; CPDA: 4-chloro–o-phenylenediamine; HZPY: 2-hydraziniopyridine) were synthesized, characterized, and tested against breast cancer (MCF-7), prostate carcinoma cell line (PC3) and liver carcinoma cell line (HEPG2). [Pd(DABA)Cl2] complex exhibited the highest inhibition percentage, lying between 68–71%. The hydrolysis mechanism of each palladium complex, the key step preceding the binding to the biological target, as well as their photophysical properties were explored by means of DFT and TDDFT computations. Results indicate a faster hydrolysis process for the Pd(DABA)Cl2 complex. The computed activation energies for the first and second hydrolysis processes suggest that all the compounds could reach DNA in their monohydrated form.  相似文献   

11.
Five different complexes of nickel(II) withanti-2-furancarboxaldoxime (-FDH) have been prepared and characterized by elemental analysis, molecular weights, conductance studies, magnetic moments and infra-red spectral studies. These are [Ni(FDH)4Cl2], [Ni(FD)2(FDH)], [Ni(FD)2(FDH)2], [Ni(FD)2·en], and [Ni(FD)2]. All the complexes are neutral monomeric, paramagnetic (=3.3–3.7 B) and may be considered octahedral except the complex [Ni(FD)2], (=2.92 B) which is tetrahedral. In these complexes the ligand functions as a monodentate and/or bidentate, coordinating with furan oxygen and oxime oxygen in the latter case. The ligand has been shown to be present in the ionized, and/or unionized form in these complexes.  相似文献   

12.
[M(CpBz)(CO)3CH3] (M=Mo, 2a, W, 2b; CpBz=C5(CH2Ph)5) have been prepared and reacted with PCl5 and PhI · Cl2. Depending on the metal and on the chlorinating reagent used [Mo(CpBz)(η2-COCH3)Cl3], 3, [W(CpBz)Cl4], 4, [Mo(CpBz)(CO)3Cl], 5 and [Mo(CpBz)Cl4], 6 have been obtained. The molecular structures of all compounds are reported and two conformations have been characterised for the benzyl substituents. In complexes 2a, 2b and 5 one phenyl ring bends towards the metals while in 3 and 4 the five phenyls point opposite to the metals.  相似文献   

13.
Six novel organometallic half sandwich complexes [(η5‐C5Me5)M(L1–3)Cl]Cl.2H2O were synthesized using [{(η5‐C5Me5)M(μ‐Cl)Cl2], where M = Ir (III)/Rh (III) and L1–3 = three pyridyl pyrimidine based ligands; and characterized by NMR, Infra‐red spectroscopy, conductance, elemental and thermal analysis. The complex‐DNA binding mode and/or strength evaluated using absorption titration, electrochemical studies and hydrodynamic measurement proposed intercalative binding mode, which was also confirmed by molecular docking study. Differential pulse voltammetry and cyclic voltammetry studies indicated an alteration in oxidation and reduction potentials of complexes (M+4/M+3) in presence of CT‐DNA. The metal complexes can cleave plasmid DNA as proposed in gel electrophoretic analysis. The LC50 values of complexes evaluated on brine shrimp suggested their potent cytotoxic nature.  相似文献   

14.
Abstract  Two new complexes, [Ag(L)2](NO3) · (H2O) (1) and [Co(L)2Cl2] (2) [L = 1-(imidazol-1-yl-methyl)-benzotriazole], have been synthesized and structurally characterized by X-ray diffraction techniques. In complex (1), the Ag(I) atom adopts a linear coordination geometry involving the imidazole nitrogens of two ligands. The [Ag(L)2] units are developed into a three-dimensional structure by intermolecular hydrogen bonds, π–π interactions, and Ag···O interactions. In complex (2), the Co(II) atom is in a distorted tetrahedral environment with two imidazole nitrogens and two chloride ligands. The [Co(L)2Cl2] units are assembled into a three-dimensional structure by intermolecular hydrogen bonds and π–π interactions. The bioactivities of both complexes have been studied, and the results indicate that complex (1) exhibits excellent radical-scavenging (RS) and fungicidal (FG) activities while complex (2) only has weak fungicidal activity. Graphical abstracts   Synthesis, crystal structures and biological activities of silver(I) and cobalt(II) complexes with an azole derivative ligand. Chang-Xue An, Xin-Li Han, Peng-Bang Wang, Zhi-Hui Zhang*, Hai-Ke Zhang and Zhi-Jin Fan Two novel complexes, [Ag(L)2](NO3) · (H2O) (1) and [Co(L)2Cl2] (2) [L = 1-(imidazol-1-yl-methyl)-benzotriazole] have been synthesized and structurally characterized. The molecules of complexes (1) and (2) are extended to 2-D and 3-D structures by the non-coordinated bonds. The ligand and complex (1) exhibit excellent radical-scavenging and fungicidal activities. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.

Abstract  

Five ruthenium complexes of the general type trans-[RuII(btd)(Azo)Cl2] ({Azo = PhN=NC(COMe) = NC6HY, where Y = H (a), Me (b), OMe (c), Cl (d) or Br (e)} and btd = 4,4′-bi-1,2,3-thiadiazole) have been prepared by the reaction of RuCl3 with the ligands in the presence of LiCl. These complexes have been characterized by spectroscopic (IR, UV–Vis, and NMR) and electrochemical techniques. In addition, the complex trans-[RuII(btd)(L5)Cl2] (complex 5) has been characterized by X-ray diffraction analysis. The electrochemical parameter for the π-excessive ligand (btd) is reported. The absorption spectrum of complex 5 in acetonitrile has been modeled by time-dependent density functional theory.  相似文献   

16.
Reaction of Ph2PNHCH2-C4H3S with [Ru(η6-p-cymene)(μ-Cl)Cl]2, [Ru(η6-benzene)(μ-Cl)Cl]2, [Rh(μ-Cl)(cod)]2 and [Ir(η5-C5Me5)(μ-Cl)Cl]2 yields complexes [Ru(Ph2PNHCH2-C4H3S)(η6-p-cymene)Cl2], 1, [Ru(Ph2PNHCH2-C4H3S)(η6-benzene)Cl2], 2, [Rh(Ph2PNHCH2-C4H3S)(cod)Cl], 3 and [Ir(Ph2PNHCH2-C4H3S)(η5-C5Me5)Cl2], 4, respectively. All complexes were isolated from the reaction solution and fully characterized by analytical and spectroscopic methods. The structure of [Ru(Ph2PNHCH2-C4H3S)(η6-benzene)Cl2], 2 was also determined by single crystal X-ray diffraction. 1-4 are suitable precursors forming highly active catalyst in the transfer hydrogenation of a variety of simple ketones. Notably, the catalysts obtained by using the ruthenium complexes [Ru(Ph2PNHCH2-C4H3S)(η6-p-cymene)Cl2], 1 and [Ru(Ph2PNHCH2-C4H3S)(η6-benzene)Cl2], 2 are much more active in the transfer hydrogenation converting the carbonyls to the corresponding alcohols in 98-99% yields (TOF ≤ 200 h−1) in comparison to analogous rhodium and iridium complexes.  相似文献   

17.
A series of gold(I) complexes containing diphenylphosphine bridging ligands, dppm, dppe, dpephos, dbfphos and biphep and co-ligands of the type pyrazole have been synthesized. The X-ray crystal structures of [Au2(μ-dpephos)(μ-pz2CH3)][PF6], [Au2(μ-dbfphos)(μ-pz2CH3)][PF6], and of the starting compound [Au2Cl2(μ-biphep)] indicate that the structural and stoichiometric characteristics of the new complexes depend on the diphosphine ligand. The three complexes show Au?Au contacts between 3.27 Å and 3.30 Å, with that of the biphep compound being the shortest. Digold (I)-diphosphine derivatives with a bridging pyrazolate ligand are obtained in all cases, except when [Au2Cl2(μ-biphep)] is used as starting material. Surprisingly, in this case, two monodentate neutral pyrazole ligands are attached to the gold atoms. The new complexes are luminescent in the solid state at 77 K and in solution both at room temperature and 77 K. Low energy emission bands related to the presence of Au?Au interactions have been identified in some of the compounds in the solid state and/or in solution.  相似文献   

18.
Four new platinum(II) complexes [Pt(dpen)(bpy)](ClO4)2 ( 1 ) , [Pt(dpen)(phen)](ClO4)2 ( 2 ), [Pt(dpen)(dpq)](ClO4)2 ( 3 ) and [Pt(dpen)(dppz)](ClO4)2 ( 4 ) comprising of different N,N‐donor ligands, viz., 2,2′‐bipyridine (bpy), 1,l0‐phenanthroline (phen), dipyridoquinoxaline (dpq), dipyrido‐[3,2‐d:2¢,3¢‐f –phenazine] (dppz), and chiral ancillary ligand 1R,2R ‐1,2‐diphenylethylenediamine (dpen) have been synthesized and characterized. The interaction of these complexes 1–4 with calf‐thymus DNA (CT‐DNA) has been explored using absorption, circular dichroism spectral and cyclic voltammetric studies. The absorption spectrum of complex 4 with dppz ligand exhibits a major red shift with an overall hypochromic as well as a hyperchromic effect in the presence of DNA, other complexes ( 1 – 3 ) show only hypochromism. From these absorption spectral studies, the intercalative ability of the complexes follows the order as, 4  >  3  >  2  >  1 , which is further confirmed by CD and cyclic voltammetry measurements. CD spectral studies show that DNA becomes more A ‐like upon interaction with the complexes 1 & 2 but the complexes 3 & 4 bring about B ‐form to Z ‐ form DNA conformational transition. The DNA cleavage study of these Pt(II) complexes 1–4 carried out by gel electrophoresis revealed that complexes 1–4 can cleave super coiled (SC) pUC18 DNA efficiently into open circular form (form II) under hydrolytic and oxidative conditions.  相似文献   

19.
Three novel copper(II) complexes, [Cu(Gly‐l ‐Val)(HPBM)(H2O)]·ClO4·H2O ( 1 ), [Cu(Gly‐l ‐Val)(TBZ)(H2O)]·ClO4 ( 2 ) and [Cu(Gly‐l ‐Val)(PBO)(H2O)]·ClO4 ( 3 ) (Gly‐l ‐Val = glycyl‐l ‐valine anion, HPBM = 5‐methyl‐2‐(2′‐pyridyl)benzimidazole, TBZ = 2‐(4′‐thiazolyl)benzimidazole, PBO = 2‐(2′‐pyridyl)benzoxazole), have been prepared and characterized with elemental analyses, conductivity measurements as well as various spectroscopic techniques. The interactions of these copper complexes with calf thymus DNA were explored using UV–visible, fluorescence, circular dichroism, thermal denaturation, viscosity and docking analyses methods. The experimental results showed that all three complexes could bind to DNA via an intercalative mode. Moreover, the cytotoxic effects were evaluated using the MTT method, and the antimicrobial activity of these complexes was tested against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. The results showed that the activities are consistent with their DNA binding abilities, following the order of 1 > 2 > 3 .  相似文献   

20.
Two complexes [MnL2 (H2O)2]·2ClO4 (complex 1) and [CuL(H2O)3]·2NO3 (complex 2) (where L = 3,5‐bis(1‐imidazoly) pyridine) were designed and synthesized. The structures of the complexes were characterized by X‐ray crystallography, elemental analyses, and infrared spectrum. The interaction capacity of the complexes with calf thymus DNA has been investigated by UV and fluorescence spectroscopy. Gel electrophoresis assay demonstrated the ability of the complexes to cleave the pBR322 plasmid DNA. Efficient binding properties of DNA were established by UV–vis, fluorescence, and gel electrophoresis. The intrinsic binding constants (Kb) were calculated to be 0.1524, 0.1041 for complexes 1–2, respectively. The cytotoxic activity of the two complexes exhibited a higher cytotoxicity against HeLa cell lines and lower cytotoxicity toward the normal cell lines. Flow cytometry demonstrated the cancer cell inhibitory rate of two complexes. Furthermore, computer‐aided molecular docking studies were performed to visualize the binding mode of the drug candidate at the molecular level. Interestingly, complex 1 exhibited a significant cancer cell inhibitory rate than cisplatin and other complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号