首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
铬酸及硝酸混合液处理以增强碳纳米管场发射   总被引:1,自引:0,他引:1  
为了修饰碳纳米管(CNTs)的表面型态及改变碳纳米管的表面结构, 进一步增强碳纳米管的场发射特性, 使用铬酸及硝酸的混合溶液对碳纳米管进行后处理. 采用SEM、TEM、Raman 和EDS测试手段对样品的形貌、表面成份组成和微观结构特征进行了表征. 场发射(FE)的数据显示, 经过铬酸及硝酸的混合溶液处理20 min的碳纳米管场发射电流比未经任何处理的碳纳米管场发射电流明显增加一个数量级以上, 场发射电流增强的主要原因为样品上的碳纳米管的表面型态的改变, 造成碳纳米管场发射增强因子茁的增大. 与单独使用硝酸溶液后处理比较, 使用铬酸及硝酸的混合溶液对碳纳米管进行后处理可以得到较高的场发射电流及较低的起始电场. 铬酸及硝酸的混合溶液处理方法能经济且有效增强碳纳米管的场发射特性.  相似文献   

2.
Mesoporous multiwalled carbon nanotubes/titanium dioxide (CNTs/TiO(2)) nanocomposites with low loading amounts (0-0.5 wt%) of CNTs embedded inside mesoporous TiO(2) aggregates has been prepared by a simple one-pot hydrothermal method using titanium sulfate as titanium source. The as-prepared CNTs/TiO(2) samples are carefully characterized, analyzed and discussed. In contrast to previous reports with high CNT loading, our results indicate that a low CNT loading slightly influences the textural properties (including crystallite size, degree of crystallinity, specific surface areas, and pore volume etc.) and UV-light absorption of the mesoporous TiO(2) aggregates. The SEM and TEM results demonstrate that the CNTs are mostly embedded in the mesoporous TiO(2) aggregates. Moreover, chemical bonds are formed at the interface between CNTs and TiO(2), which is confirmed by the Raman, IR and XPS analyses. Significantly, we point out that PL analysis in terms of intensity of PL signals seems to not be a reliable way to monitor the recombination rate in the CNTs/TiO(2) composite, due to the quenching effect of CNTs. Instead, the analysis of transient photocurrent responses is introduced, which definitely reflects CNTs as fast electron transfer channels in chemically-bonded CNTs/TiO(2) composites with low CNT loading. Notably, the positive synergy effects of CNTs and TiO(2) depend on both the CNT loading amount and the state of interfacial contacts. In our study, only these chemically bonded CNTs/TiO(2) nanocomposites with appropriate loading amounts (<0.1 wt%) favor the separation of photogenerated electron-hole pairs and decrease their recombination rate and thus display significantly enhanced photocatalytic activity for degrading acetone in air under UV irradiation, as compared with pristine TiO(2) counterparts and commercial P25 photocatalyst. In contrast, a high CNT loading (>0.1 wt%) results in a decrease in photocatalytic activity; a simple mechanical mixing of CNTs and TiO(2) without forming chemical bonds at the interface also results in inferior photocatalytic performance.  相似文献   

3.
《中国化学快报》2020,31(7):1914-1918
Unremitting efforts have been intensively making for pursuing the goal of the reversible transition of electrowetting owing to its vital importance to many practical applications, but which remains a major challenge for carbon nanotubes due to the irreversible electrochemical damage. Herein, we proposed a subtly method to prevent the CNT array from electrochemical damage by using liquid medium instead of air medium to form a liquid/liquid/solid triphase system. The dimethicone dynamically refills in CNT arrays after removing of voltage that makes the surface back to hydrophobic, which is an elegant way to not only decrease energy dissipation in electrowetting process but also obtain extra energy in reversible dewetting process. Repeated cycles of in situ experiments showed that more than four reversible electrowetting cycles could be achieved in air. It worth mention that the in situ reversible electrowetting voltage of the dimethicone infused CNT array has been lowered to 2 V from 7 V which is the electrowetting voltage for the pure CNT array. The surface of the dimethicone infused CNT array can maintain hydrophobicity with a contact angle of 145.6° after four cycles, compared with 148.1° of the initial state. Moreover, a novel perspective of theoretical simulations through the binding energy has been provided which proved that the charged CNTs preferred binding with water molecules thereby replacing the dimethicone molecules adsorbed on the CNTs, whereas reconnected with dimethicone after removing the charges. Our study provides distinct insight into dynamic reversible electrowetting on the nanostructured surface in air and supplies a way for precise control of wettability in surface chemistry, smart phase-change heat transfer enhancement, liquid lenses, microfluidics, and other chemical engineering applications.  相似文献   

4.
The systems of open-ended carbon nanotubes (CNTs) immersed in methanol-water solution are studied by molecular dynamics simulations. For the (6,6) CNT, nearly pure methanol is found to preferentially occupy interior space of the CNT. Even when the mass fraction (MF) of methanol in bulk solution is as low as 1%, the methanol MF within the CNT is still more than 90%. For CNTs with larger diameters, the methanol concentrations within CNTs are also much higher than those outside CNTs. The methanol selectivity decreases with increasing CNT diameter, but not monotonically. From microscopic structural analyses, we find that the primary reason for the high selectivity of methanol by CNTs lies on high preference of methanol in the first solvation shell near the inner wall of CNT, which stems from a synergy effect of the van der Waals interaction between CNT and the methyl groups of methanol, together with the hydrogen bonding interaction among the liquid molecules. This synergy effect may be of general significance and extended to other systems, such as ethanol aqueous solution and methanol/ethanol mixture. The selective adsorption of methanol over water in CNTs may find applications in separation of water and methanol, detection of methanol, and preservation of methanol purity in fuel cells.  相似文献   

5.
By using the advantages of carbon nanotubes (CNTs), such as their excellent mechanical properties and low density, CNT-reinforced metal matrix composites (MMCs) are expected to overcome the limitations of conventional metal materials, i.e., their high density and low ductility. To understand the behavior of composite materials, it is necessary to observe the behavior at the molecular level and to understand the effect of various factors, such as the radius and content of CNTs. Therefore, in this study, the effect of the CNT radius and content on the mechanical properties of CNT-Al composites was observed using a series of molecular dynamics simulations, particularly focusing on MMCs with a high CNT content and large CNT diameter. The mechanical properties, such as the strength and stiffness, were increased with an increasing CNT radius. As the CNT content increased, the strength and stiffness increased; however, the fracture strain was not affected. The behavior of double-walled carbon nanotubes (DWNTs) and single-walled carbon nanotubes (SWNTs) was compared through the decomposition of the stress–strain curve and observations of the atomic stress field. The fracture strain increased significantly for SWNT-Al as the tensile force was applied in the axial direction of the armchair CNTs. In the case of DWNTs, an early failure was initiated at the inner CNTs. In addition, the change in the elastic modulus according to the CNT content was predicted using the modified rule of mixture. This study is expected to be useful for the design and development of high-performance MMCs reinforced by CNTs.  相似文献   

6.
Solution redox chemistry of carbon nanotubes   总被引:1,自引:0,他引:1  
UV/vis/NIR absorbance spectra were used to monitor electron transfer between small-molecule redox reagents and carbon nanotubes (CNTs). The oxidation of (6, 5)-enriched nanotubes in water with K(2)Ir(Cl)(6) reveals a valence electron density of 0.2-0.4 e(-)/100 carbon atoms and a reduction potential of approximately 800 mV versus NHE. The reduction potential of CNTs is found to increase with increasing band gap and to decrease with the introduction of an anionic dispersant. In light of this newly revealed redox chemistry of CNTs, we propose that the previously observed bleaching of the CNT absorbance spectrum at low pH is most likely a consequence of the oxidation of the nanotubes by oxygen. These results demonstrate facile oxidation and reduction of CNTs, provide a way to quantify the population of valence electrons, and point to possible applications of CNT in the catalysis of redox reactions.  相似文献   

7.
A simple acid treatment method was applied to functionalize the surface and to modify the structures of multi-walled carbon nanotubes (CNTs) grown on silicon substrates using a mixed solution of chromic trioxide (CrO3) and nitric acid (HNO3). Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and energy dispersive spectrometer (EDS) were employed to investigate the mechanism causing the modified field emission (FE) properties of the CNT films. After 20 min of CrO3+HNO3 treatment, the emitted currents were enhanced by more than one order of magnitude compared with those of the untreated CNTs. This large increase in emitted current can be attributed to the favorable surface morphologies, open-ended structures, and highly curved CNT surfaces in the CNT films. These factors altogether caused an increase in the field enhancement factors of CNTs. We also demonstrated that using a mixed solution of CrO3+HNO3 post-treatment exhibited a higher emission current and a lower turn-on electric field than in the CNTs treated with HNO3. The method provides a simple, economical, and effective way to enhance the CNT field emission properties.  相似文献   

8.
We use molecular dynamics (MD) simulations to study the transport of single-file water molecules through carbon nanotubes (CNTs) with various lengths in an electric field. Most importantly, we find that even the water dipoles inside the CNT are maintained along the field direction, a large amount of water molecules can still transport against the field direction for short CNTs, leading to a low unidirectional transport efficiency (η). As the CNT length increases, the efficiency η will increase remarkably, and achieves the maximum value of 1.0 at or exceeding a critical CNT length. Consequently, the transition from bidirectional to unidirectional transport is observed and is found to be relevant to thermal fluctuations of the two reservoirs, which is explored by the interaction between water molecules inside and outside the CNT. We also find that the water flow vs CNT length follows an exponential decay of f ~ exp?(- L/L(0)), and the average translocation time of individual water molecules yields to a power law of τ(trans) ~ L(υ), where L(0) and ν are constant and slightly depend on the field strength. We further compare our results with the continuous-time random-walk (CTRW) model and find that the water flow can also be described by a power law of f ~ L(-μ) modified from CTRW. Our results provide some new physical insights into the biased transport of single-file water molecules, which show the feasibility of using CNTs with any length to pump water in an electric field. The mechanism is important for designing efficient nanofluidic apparatuses.  相似文献   

9.
碳纳米管独特的几何和电子结构使其具有丰富优异的性质,因此在过去的二十余年备受研究者的关注。然而,碳纳米管结构的多样性成为其从实验室走到产业化的最大阻碍,结构决定性质,制备决定未来,完善的结构控制制备技术将成为碳纳米管基础研究和产业化应用中至关重要的一环。本文首先对碳纳米管的结构进行描述,然后综述了碳纳米管的结构可控制备方法和溶液纯化分离技术,提出未来理想的碳纳米管制备之路是将碳纳米管精细结构控制方法与宏量制备技术相结合,在降低碳纳米管生产成本的同时,提高其纯度,并建立碳纳米管产品的标准。最后,展望了碳纳米管的杀手锏级应用和该领域的机遇和挑战。  相似文献   

10.
A new class of nanocomposite has been fabricated from liquid crystalline (LC) epoxy resin of 4,4′‐bis(2,3‐epoxypropoxy) biphenyl (BP), 4,4′‐diamino‐diphenyl sulfone (DDS), and multiwalled carbon nanotubes (CNTs). The surface of the CNTs was functionalized by LC epoxy resin (ef‐CNT). The ef‐CNT can be blended well with the BP that is further cured with an equivalent of DDS to form nanocomposite. We have studied the curing kinetics of this nanocomposite using isothermal and nonisothermal differential scanning calorimetry (DSC). The dependence of the conversion on time can fit into the autocatalytic model before the vitrification, and then it becomes diffusion control process. The reaction rate increases and the activation energy decreases with increasing concentration of the ef‐CNT. At 10 wt % of ef‐CNT, the activation energy of nanocomposite curing is lowered by about 20% when compared with the neat BP/DDS resin. If the ef‐CNT was replaced by thermal‐insulating TiO2 nanorods on the same weight basis, the decrease of activation energy was not observed. The result indicates the accelerating effect on the nanocomposite was raised from the high‐thermal conductivity of CNT and aligned LC epoxy resin. However, at ef‐CNT concentration higher than 2 wt %, the accelerating effect of ef‐CNTs also antedates the vitrification and turns the reaction to diffusion control driven. As the molecular motions are limited, the degree of cure is lowered. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

11.
Ultrastructural characterisation is important for understanding carbon nanotube (CNT) toxicity and how the CNTs interact with cells and tissues. The standard method for this involves using transmission electron microscopy (TEM). However, in particular, the sample preparation, using a microtome to cut thin sample sections for TEM, can be challenging for investigation of regions with agglomerations of large and stiff CNTs because the CNTs cut with difficulty. As a consequence, the sectioning diamond knife may be damaged and the uncut CNTs are left protruding from the embedded block surface excluding them from TEM analysis. To provide an alternative to ultramicrotomy and subsequent TEM imaging, we studied focused ion beam scanning electron microscopy (FIB-SEM) of CNTs in the lungs of mice, and we evaluated the applicability of the method compared to TEM. FIB-SEM can provide serial section volume imaging not easily obtained with TEM, but it is time-consuming to locate CNTs in the tissue. We demonstrate that protruding CNTs after ultramicrotomy can be used to locate the region of interest, and we present FIB-SEM images of CNTs in lung tissue. FIB-SEM imaging was applied to lung tissue from mice which had been intratracheally instilled with two different multiwalled CNTs; one being short and thin, and the other longer and thicker. FIB-SEM was found to be most suitable for detection of the large CNTs (Ø ca. 70 nm), and to be well suited for studying CNT agglomerates in biological samples which is challenging using standard TEM techniques.
Figure
3D FIB-SEM image reconstruction of carbon nanotube (CNT) sample in lung tissue obtained with the double tilted milling method. A few CNTs have manually been traced in the 3D volume, and the white arrowheads point to a single CNT. A – alveole, E – erythrocyte, and P1 – pneumocyte (type 1).  相似文献   

12.
Electron field-emission measurements on individual carbon nanotubes (CNTs) were performed inside the transmission electron microscope (TEM). The field-emission characteristics of CNTs with different tip structures were compared, and their field conversion factor and emission area were studied systematically. It was found that the field-emission characteristics of a CNT depend sensitively on its tip structure, and in particular an opened CNT was shown to be superior to a capped CNT. High-resolution TEM observations revealed that the tip of an opened CNT may, in general, be regarded as being composed of irregular shaped graphitic sheets, and these graphitic sheets have been found to improve dramatically the field-emission characteristics, but the sharp edge may result in larger error in the calculated emission area. The influence of uncertainty in the work function of the CNTs on the field conversion factor and emission area calculation was also investigated.  相似文献   

13.
Polymer crystallization-driven, periodic patterning on carbon nanotubes   总被引:4,自引:0,他引:4  
We report herein a unique means to periodically pattern polymeric materials on individual carbon nanotubes (CNTs) using a controlled polymer crystallization method. One-dimensional (1D) CNTs were periodically decorated with polymer lamellar crystals, resulting in nano-hybrid shish-kebab (NHSK) structures. The periodicity of the polymer lamellae varies from 20 to 150 nm. The kebabs are approximately 5-10 nm thick (along CNT direction) with a lateral size of approximately 20 nm to micrometers, which can be readily controlled by varying crystallization conditions. Both polyethylene and Nylon 66 were successfully decorated on single-walled carbon nanotubes (SWNTs), multiwalled carbon nanotubes (MWNTs), as well as vapor grown carbon nanofibers (CNFs). The formation mechanism was attributed to "size-dependent soft epitaxy". Because NHSK formation conditions depend on CNT structures, it further provides a unique opportunity for CNT separation. The reported method opens a gateway to periodically patterning polymers and different functional groups on individual CNTs in an ordered and controlled manner, an attractive research field that is yet to be explored.  相似文献   

14.
Syndiotactic polystyrene (sPS) composites filled with well-dispersed multi-walled carbon nanotubes (CNTs) were readily prepared through a coagulation method. Fourier-transform infrared spectroscopy and wide-angle X-ray diffraction revealed the effect of CNTs on the polymorphism of sPS. When crystallized from the melted state, the formation of the β-form was always favored after CNT addition regardless of crystallization conditions (isothermal or non-isothermal). In the case where liquid nitrogen was used to quench the melt, the uncrystallized material that was not able to crystallize in the extremely short crystallization time crystallized in the α form upon subsequent cold crystallization. Regardless of the CNT content, the glass transition and equilibrium melting temperature of the sPS matrix were unchanged at ∼96 and 290 °C, respectively. With a gradual increase in CNT loading, the sPS crystallization rate initially increased but then reached a plateau value at high CNT concentrations because of the reduction in chain mobility. Moreover, the Avrami exponent was changed from 2.8 for samples at low CNT contents to 2.0 for samples with a CNT concentration above 0.1 wt.%, at which the rheological threshold was approached and a polymer-CNT hybrid network was formed. The enhanced crystallization kinetics was attributed to the high nucleating ability of CNTs to induce a transcrystalline layer (TCL) at its surface, as revealed by transmission electron microscopy. For composites with low levels of CNT, the growth of sPS spherulites in the bulk between CNTs prevailed. Provided that the CNT-related networks were developed, the two-dimensional growth of cylindrical TCL at the CNT surface became dominant and led to the expected Avrami exponent.  相似文献   

15.
Carbon nanotubes (CNTs) have long been recognized as the stiffest and strongest man-made material known to date.In addition,their high electrical conductivity has roused interest in the areas of electrical appliances and communication related applications.However,due to their miniature size,the excellent properties of these nanostructures can only be exploited if they are homogeneously embedded into light-weight matrices as those offered by a whole series of engineering polymers.In order to enhance their chemical affinity to engineering polymer matrices,chemical modification of the graphitic sidewalls and tips is necessary.The mechanical and electrical properties to date of a whole range of nanocomposites of various carbon nanotube contents are also reviewed in this attempt to facilitate progress in this emerging area.Recently,carbonaceous nano-fillers such as graphene and carbon nanotubes (CNTs) play a promising role due to their better structural and functional properties and broad range of applications in every field.Since CNTs usually form stabilized bundles due to van der Waals interactions,they are extremely difficult to disperse and align in a polymer matrix.The biggest issues in the preparation of CNTs reinforced composites reside in efficient dispersion of CNTs into a polymer matrix,the assessment of the dispersion,and the alignment and control of the CNTs in the matrix.An overview of various CNT functionalization methods is given.In particular,CNT functionalization using click chemistry and the preparation of CNT composites employing hyperbranched polymers are stressed as potential techniques to achieve good CNT dispersion.In addition,discussions on mechanical,thermal,electrical,electrochemical and applications ofpolymer/CNT composites are also included.  相似文献   

16.
离子液体(IL)与碳纳米管(CNT)形成的复合体系在许多重要领域有潜在的应用价值,然而人们对于其微观结构的理解尚不清晰,对IL与CNT相互作用机理的认识还存有争议.本文以(8,0)CNT与1-丁基-3-甲基咪唑六氟化磷IL为例研究了CNT与IL的相互作用,分别探讨了1-丁基-3-甲基咪唑阳离子([BMIM+])、六氟化...  相似文献   

17.
The catalytic CVD synthesis, using propyne as carbon precursor and Fe(NO3)3 as catalyst precursor inside porous alumina, gives carbon nanotube (CNT) bags in a well-arranged two-dimensional order. The tubes have the morphology of bags or fibers, since they are completely filled with smaller helicoidal CNTs. This morphology has so far not been reported for CNTs. Owing to the dense filling of the outer mother CNTs with small helicoidal CNTs, the resulting CNT fibers appear to be stiff and show no sign of inflation, as sometimes observed with hollow CNTs. The fiber morphology was observed by raster electron microscopy (REM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The carbon material is graphitic as deduced from spectroscopic studies (X-ray diffraction, Raman and electron energy-loss spectroscopy (EELS)). From M?ssbauer studies, the presence of two different oxidation states (Fe0 and FeIII) of the catalyst is proven. Geometric structuring of the template by two different methods has been studied. Inkjet catalyst printing shows that the tubes can be arranged in defined areas by a simple and easily applied technique. Laser-structuring creates grooves of nanotube fibers embedded in the alumina host. This allows the formation of defined architectures in the microm range. Results on hydrogen absorption and field emission properties of the CNT fibers are reported.  相似文献   

18.
Xia Chu  Daxue Duan  Guoli Shen  Ruqin Yu 《Talanta》2007,71(5):2040-2047
A new amperometric biosensor for glucose was developed based on adsorption of glucose oxidase (GOx) at the gold and platinum nanoparticles-modified carbon nanotube (CNT) electrode. CNTs were covalently immobilized on gold electrode via carbodiimide chemistry by forming amide linkages between carboxylic acid groups on the CNTs and amine residues of cysteamine self-assembled monolayer (SAM). The fabricated GOx/Aunano/Ptnano/CNT electrode was covered with a thin layer of Nafion to avoid the loss of GOx in determination and to improve the anti-interferent ability. The immobilization of CNTs on the gold electrode was characterized by quartz crystal microbalance technique. The morphologies of the CNT/gold and Ptnano/CNT/gold electrodes have been investigated by scanning electron microscopy (SEM), and the electrochemical performance of the gold, CNT/gold, Ptnano/gold and Ptnano/CNT/gold electrodes has also been studied by amperometric method. In addition, effects of electrodeposition time of Pt nanoparticles, pH value, applied potential and electroactive interferents on the amperometric response of the sensor were discussed.

The enzyme electrode exhibited excellent electrocatalytic activity and rapid response for glucose in the absence of a mediator. The linear range was from 0.5 to 17.5 mM with correction coefficient of 0.996. The biosensor had good reproducibility and stability for the determination of glucose.  相似文献   


19.
Carbon nanotubes (CNTs) were directly synthesized on flexible polymer substrates without damage of polymer by microwave irradiation. Cobalt was used as the catalysts, and the synthesis was done in the atmospheric pressure with an acetylene carbon source. Only 5 s was required for the synthesis of well-graphitized CNTs. Field emission measurements revealed that this flexible CNT field emitter array has a great potential for the flexible field emission displays (FEDs).  相似文献   

20.
Carbyne, an infinite carbon chain, has attracted much interest and induced significant controversy for many decades. Recently, the presence of linear carbon chains (LCCs), which were confined stably inside double-wall carbon nanotubes (DWCNTs) and multiwall carbon nanotubes (MWCNTs), has been reported. In this study, we present a novel method to produce LCCs in a film of carbon nanotubes (CNTs). Our transmission electron microscopy and Raman spectroscopy revealed the formation of a bulk amount of LCCs after electric discharge of CNT films, which were used as field emission cathodes. The LCCs were confined inside single-wall CNTs as well as DWCNTs. Furthermore, two or three LCCs in parallel with each other are encapsulated when the inner diameter of CNT is larger than approximately 1.1 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号