首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work is the first to demonstrate the ability of contactless dielectrophoresis (cDEP) to isolate target cell species from a heterogeneous sample of live cells. Since all cell types have a unique molecular composition, it is expected that their dielectrophoretic (DEP) properties are also unique. cDEP is a technique developed to improve upon traditional and insulator-based DEP devices by replacing embedded metal electrodes with fluid electrode channels positioned alongside desired trapping locations. Through the placement of the fluid electrode channels and the removal of contact between the electrodes and the sample fluid, cDEP mitigates issues associated with sample/electrode contact. MCF10A, MCF7, and MDA-MB-231 human breast cells were used to represent early, intermediate, and late-staged breast cancer, respectively. Trapping frequency responses of each cell type were distinct, with the largest difference between the cells found at 20 and 30 V. MDA-MB-231 cells were successfully isolated from a population containing MCF10A and MCF7 cells at 30 V and 164 kHz. The ability to selectively concentrate cells is the key to development of biological applications using DEP. The isolation of these cells could provide a workbench for clinicians to detect transformed cells at their earliest stage, screen drug therapies prior to patient treatment, increasing the probability of success, and eliminate unsuccessful treatment options.  相似文献   

2.
Fan SK  Huang PW  Wang TT  Peng YH 《Lab on a chip》2008,8(8):1325-1331
Two important electric forces, dielectrophoresis (DEP) and electrowetting-on-dielectric (EWOD), are demonstrated by dielectric-coated electrodes on a single chip to manipulate objects on different scales, which results in a dielectrophoretic concentrator in an EWOD-actuated droplet. By applying appropriate electric signals with different frequencies on identical electrodes, EWOD and DEP can be selectively generated on the proposed chip. At low frequencies, the applied voltage is consumed mostly in the dielectric layer and causes EWOD to pump liquid droplets on the millimetre scale. However, high frequency signals establish electric fields in the liquid and generate DEP forces to actuate cells or particles on the micrometre scale inside the droplet. For better performance of EWOD and DEP, square and strip electrodes are designed, respectively. Mammalian cells (Neuro-2a) and polystyrene beads are successfully actuated by a 2 MHz signal in a droplet by positive DEP and negative DEP, respectively. Droplet splitting is achieved by EWOD with a 1 kHz signal after moving cells or beads to one side of the droplet. Cell concentration, measured by a cell count chamber before and after experiments, increases 1.6 times from 8.6 x 10(5) cells ml(-1) to 1.4 x 10(6) cells ml(-1) with a single cycle of positive DEP attraction. By comparing the cutoff frequency of the voltage drop in the dielectric layer and the cross-over frequency of Re(fCM) of the suspended particles, we can estimate the frequency-modulated behaviors between EWOD, positive DEP, and negative DEP. A proposed weighted Re(fCM) facilitates analysis of the DEP phenomenon on dielectric-coated electrodes.  相似文献   

3.
Tsai SL  Hong JL  Chen MK  Jang LS 《Electrophoresis》2011,32(11):1337-1347
This work presents a microfluidic system that can transport, concentrate, and capture particles in a controllable droplet. Dielectrophoresis (DEP), a phenomenon in which a force is exerted on a dielectric particle when it is subjected to a non-uniform electric field, is used to manipulate particles. Liquid dielectrophoresis (LDEP), a phenomenon in which a liquid moves toward regions of high electric field strength under a non-uniform electric field, is used to manipulate the fluid. In this study, a mechanism of droplet creation presented in a previous work that uses DEP and LDEP is improved. A driving electrode with a DEP gap is used to prevent beads from getting stuck at the interface between air and liquid, which is actuated with an AC signal of 200 V(pp) at a frequency of 100 kHz. DEP theory is used to calculate the DEP force in the liquid, and LDEP theory is used to analyze the influence of the DEP gap. The increment of the actuation voltage due to the electrode with a DEP gap is calculated. A set of microwell electrodes is used to capture a bead using DEP force, which is actuated with an AC signal of 20 V(pp) at a frequency of 5 MHz. A simulation is carried out to investigate the dimensions of the DEP gap and microwell electrodes. Experiments are performed to demonstrate the creation of a 100-nL droplet and the capture of individual 10-μm polystyrene latex beads in the droplet.  相似文献   

4.
Dielectrophoresis (DEP), the movement of dielectric particles in a nonuniform electric field, is of particular interest due to its ability to manipulate particles based on their unique electrical properties. Contactless DEP (cDEP) is an extension of traditional and insulator-based DEP topologies. The devices consist of a sample channel and fluid electrode channels filled with a highly conductive media. A thin insulating membrane between the sample channel and the fluid electrode channels serves to isolate the sample from direct contact with metal electrodes. Here we investigate, for the first time, the properties of multilayer devices in which the sample and electrode channels occupy distinct layers. Simulations are conducted using commercially available finite element software and a less computationally demanding numerical approximation is presented and validated. We show that devices can be created that achieve a similar level of electrical performance to other cDEP devices presented in the literature while increasing fluid throughput. We conclude, based on these models, that the ultimate limiting factors in device performance resides in breakdown voltage of the barrier material and the ability to generate high-voltage, high-frequency signals. Finally, we demonstrate trapping of MDA-MB-231 breast cancer cells in a prototype device at a flow rate of 1.0 mL/h when 250 V(RMS) at 600 kHz is applied.  相似文献   

5.
A model system consisting of a mixture of latex beads and erythrocytes has been investigated to demonstrate the practical feasibility of particle separation by means of the combined application of negative dielectrophoresis and hyperlayer field-flow fractionation. The dielectrophoretic levitation of latex beads is demonstrated by energizing interdigitated electrodes, of widths and separation ranging from 5 to 40 μm, with AC signals of 0–10 V (rms) in the frequency range 1 kHz–10 MHz. Maximum levitation was attained at 1 MHz, at which frequency levitation is relatively independent of the suspending medium conductivity. Levitation was also independent of particle size, but dependent on particle density and dielectric properties. At 1 MHz the erythrocytes were attracted to the electrodes by positive dielectrophoresis, and so could be separated from the latex beads by fluid flow. The electric field and field gradient above the electrodes were also computer modelled, and this information was used to design the electrode and chamber geometries for optimum DEP-field-flow fractionation.  相似文献   

6.
We present quantitative modeling software for simulating multiple forces acting on a single particle in a microsystem. In this paper, we focus on dielectrophoretic (DEP) trapping of single cells against fluid flow. The software effectively models the trapping behavior for a range of particles including beads, mammalian cells, viruses, and bacteria. In addition, the software can be used to reveal useful information about the DEP traps - such as multipolar DEP force effects, trap size-selectivity, and effects from varying the flow chamber height. Our modeling software thus serves as a predictive tool, enabling the design of novel DEP traps with superior performance over existing trap geometries. In addition, the software can evaluate a range of trap dimensions to determine the effects on trapping behavior, thus optimizing the trap geometry before it is even fabricated. The software is freely available to the scientific community at: .  相似文献   

7.
In this study, the dielectrophoretic response of prostate tumor initiating cells (TICs) was investigated in a microfluidic system utilizing contactless dielectrophoresis (cDEP). The dielectrophoretic response of prostate TICs was observed to be distinctively different than that for non-TICs, enabling them to be sorted using cDEP. Culturing the sorted TICs generated spheroids, indicating that they were indeed initiating cells. This study presents the first marker-free TIC separation from non-TICs utilizing their electrical fingerprints through dielectrophoresis.  相似文献   

8.
In this study, we demonstrated a micro-fluidic system with multiple functions, including concentration of bacteria using dielectrophoresis (DEP) and selective capture using antibody recognition, resulting in a high capture efficiency of bacterial cells. The device consisted of an array of oxide covered interdigitated electrodes on a flat silicon substrate and a approximately 16 microm high and approximately 260 microm wide micro-channel within a PDMS cover. For selective capture of Listeria monocytogenes from the samples, the channel surface was functionalized with a biotinylated BSA-streptavidin-biotinylated monoclonal antibody sandwich structure. Positive DEP (at 20 V(pp) and 1 MHz) was used to concentrate bacterial cells from the fluid flow. DEP could collect approximately 90% of the cells in a continuous flow at a flow rate of 0.2 microl min(-1) into the micro-channel with concentration factors between 10(2)-10(3), in sample volumes of 5-20 microl. A high flow rate of 0.6 microl min(-1) reduced the DEP capture efficiency to approximately 65%. Positive DEP attracts cells to the edges of the electrodes where the field gradient is the highest. Cells concentrated by DEP were captured by the antibodies immobilized on the channel surface with efficiencies of 18 to 27% with bacterial cell numbers ranging from 10(1) to 10(3) cells. It was found that DEP operation in our experiments did not cause any irreversible damage to bacterial cells in terms of cell viability. In addition, increased antigen expression (antigens to C11E9 monoclonal antibody) on cell membranes was observed following the exposure to DEP.  相似文献   

9.
A microfluidic chip for multistep manipulations of PMMA submicron particles (PMMA‐SMPs) based on dielectrophoresis (DEP) has been developed that includes four main functions of focusing, guiding, trapping, and releasing the SMPs. The structure of the DEP chip consists of a top electrode made of indium tin oxide, a flow chamber formed by optically clear adhesive tape and bottom electrodes with different patterns for different purposes. The bottom electrodes can be divided into three parts: a fish‐bone‐type electrode array that provides the positive DEP force for focusing the suspended nanoparticles (NPs) near the inlet in the flow chamber; the second is for switching and guiding the focused NPs along the electrode surface to the target area, like a flow passing along a virtual channel; and a trapping electrode in the downstream for trapping and releasing the guided NPs. According to the simulation and experimental results, NPs can be aligned along the electrode of the focusing electrode and guided toward the target electrode by means of a positive DEP force between the top and bottom electrodes, with the effects of Brownian motion and Stokes force. In order to demonstrate the sequence of DEP manipulations, a PMMA‐NP suspension is introduced to the DEP chip; the size of the PMMA‐SMPs is about 300 nm. Furthermore, a LabVIEW program developed for sequence control of the AC signals for the multistep manipulations. Consequently, the DEP chip provides an excellent platform technology for the multistep manipulation of SMPs.  相似文献   

10.
Under suitable conditions, a DNA molecule in solution will develop a strong electric dipole moment. This induced dipole allows the molecule to be manipulated with field gradients, in a phenomenon known as dielectrophoresis (DEP). Pure dielectrophoretic motion of DNA requires alternate current (AC) electric fields to suppress the electrophoretic effect of the molecules net charge. In this paper, we present two methods for measuring the efficiency of DEP for trapping DNA molecules as well as a set of quantitative measurements of the effects of strand length, buffer composition, and frequency of the applied electric field. A simple configuration of electrodes in combination with a microfluidic flow chamber is shown to increase the concentration of DNA in solution by at least 60-fold. These results should prove useful in designing practical microfluidic devices employing this phenomenon either for separation or concentration of DNA.  相似文献   

11.
In this study, we report the first off-chip passivated-electrode, insulator-based dielectrophoresis microchip (OπDEP). This technique combines the sensitivity of electrode-based dielectrophoresis (eDEP) with the high-throughput and inexpensive device characteristics of insulator-based dielectrophoresis (iDEP). The device is composed of a permanent, reusable set of electrodes and a disposable, polymer microfluidic chip with microposts embedded in the microchannel. The device operates by capacitively coupling the electric fields into the microchannel; thus, no physical connections are made between the electrodes and the microfluidic device. During operation, the polydimethylsiloxan (PDMS) microfluidic chip fits onto the electrode substrate as a disposable cartridge. OπDEP uses insulting structures within the channel as well as parallel electrodes to create DEP forces by the same working principle that iDEP devices use. The resulting devices create DEP forces which are larger by two orders of magnitude for the same applied voltage when compared to off-chip eDEP designs from literature, which rely on parallel electrodes alone to produce the DEP forces. The larger DEP forces allow the OπDEP device to operate at high flow rates exceeding 1 mL/h. In order to demonstrate this technology, Escherichia coli (E. coli), a known waterborne pathogen, was trapped from water samples. Trapping efficiencies of 100 % were obtained at flow rates as high as 400 μL/h and 60 % at flow rates as high as 1200 μL/h. Additionally, bacteria were selectively concentrated from a suspension of polystyrene beads.
Figure
Selective E. coli trapping in the cartridge based OπDEP device.  相似文献   

12.
The traditional bacterial identification method of growing colonies on agar plates can take several days to weeks to complete depending on the growth rate of the bacteria. Successfully decreasing this analysis time requires cell isolation followed by identification. One way to decrease analysis time is by combining dielectrophoresis (DEP), a common technique used for cell sorting and isolation, and Raman spectroscopy for cell identification. DEP‐Raman devices have been used for bacterial analysis, however, these devices have a number of drawbacks including sample heating, cell‐to‐electrode proximity that limits throughput and separation efficiency, electrode fouling, or inability to address sample debris. Presented here is a contactless DEP‐Raman device to simultaneously isolate and identify particles from a mixed sample while avoiding common drawbacks associated with other DEP designs. Using the device, a mixed sample of bacteria and 3 μm polystyrene spheres were isolated from each other and a Raman spectrum of the trapped bacteria was acquired, indicating the potential for cDEP‐Raman devices to decrease the analysis time of bacteria.  相似文献   

13.
The use of probe beads for lab-on-chip affinity assays is very interesting from a practical point of view. It is easier to handle and trap beads than molecules in microfluidic systems. We present a method for the immobilization of probe beads at defined areas on a chip using dielectrophoresis (DEP)-controlled adhesion. The method is fast, i.e., it takes between 10 and 120 s--depending on the protocol--to functionalize a chip surface at defined areas. The method is versatile, i.e., it works for beads with different types of probe molecule coatings. The immobilization is irreversible, i.e., the retained beads are able to withstand high flow velocities in a flow-through device even after the DEP voltage is turned off, thus allowing the use of conventional high-conductivity analyte buffers in the following assay procedure. We demonstrate the on-chip immobilization of fluorescent beads coated with biotin, protein A, and goat-antimouse immunoglobulin G (IgG). The number of immobilized beads at an electrode array can be determined from their fluorescence signal. Further, we use this method to demonstrate the detection of streptavidin and mouse IgG. Finally, we demonstrate the feasibility of the parallel detection of different analyte molecules on the same chip.  相似文献   

14.
《Electrophoresis》2018,39(4):590-596
The translational motion of small particles in an electrokinetic fluid flow through a constriction can be enhanced by an increase of the applied electric potential. Beyond a critical potential, however, the negative dielectrophoresis (DEP) can overpower other forces to prevent particles that are even smaller than the constriction from passing through the constriction. This DEP choking phenomenon was studied previously for rigid particles. Here, the DEP choking phenomenon is revisited for deformable particles, which are ubiquitous in many biomedical applications. Particle deformability is measured by the particle shear modulus, and the choking conditions are reported through a parametric study that includes the channel geometry, external electric potential, and particle zeta potential. The study was carried out using a numerical model based on an arbitrary Lagrangian‐Eulerican (ALE) finite‐element method.  相似文献   

15.
This paper presents the development and experimental analysis of a dielectrophoresis (DEP) system, which is used for the manipulation and separation of microparticles in liquid flow. The system is composed of arrays of microelectrodes integrated to a microchannel. Novel curved microelectrodes are symmetrically placed with respect to the centre of the microchannel with a minimum gap of 40 μm. Computational fluid dynamics method is utilised to characterise the DEP field and predict the dynamics of particles. The performance of the system is assessed with microspheres of 1, 5 and 12 μm diameters. When a high‐frequency potential is applied to microelectrodes a spatially varying electric field is induced in the microchannel, which creates the DEP force. Negative‐DEP behaviour is observed with particles being repelled from the microelectrodes. The particles of different dimensions experience different DEP forces and thus settle to separate equilibrium zones across the microchannel. Experiments demonstrate the capability of the system as a field flow fraction tool for sorting microparticles according to their dimensions and dielectric properties.  相似文献   

16.
In this paper, we present the design and characterization of a novel platform for mechanical cell lysis of even the most difficult to lyse cell types on a micro or nanoscale (maximum 70 microL total volume). The system incorporates a machined plastic circular disk assembly, magnetic field actuated microfluidics, centrifugal cells and tissue homogenizer and centrifugation system. The mechanism of tissue disruption of this novel cell homogenization apparatus derives from the relative motion of ferromagnetic metal disks and grinding matrices in a liquid medium within individual chambers of the disk in the presence of an oscillating magnetic field. The oscillation of the ferromagnetic disks or blades produces mechanical impaction and shear forces capable of disrupting cells within the chamber both by direct action of the blade and by the motion of the surrounding lysis matrix, and by motion induced vortexing of buffer fluid. Glass beads or other grinding media are integrated into each lysis chamber within the disk to enhance the transfer of energy from the oscillating metal blade to the cells. The system also achieves the centrifugal elimination of solids from each liquid sample and allows the elution of clarified supernatants via siphoning into a collection chamber fabricated into the plastic disk assembly. This article describes system design, implementation and validation of proof of concept on two samples--Escherichia coli and Saccharomyces cerevisiae representing model systems for cells that are easy and difficult to lyse, respectively.  相似文献   

17.
Wang L  Flanagan LA  Monuki E  Jeon NL  Lee AP 《Lab on a chip》2007,7(9):1114-1120
A novel dielectrophoresis switching with vertical electrodes in the sidewall of microchannels for multiplexed switching of objects has been designed, fabricated and tested. With appropriate electrode design, lateral DEP force can be generated so that one can dynamically position particulates along the width of the channel. A set of interdigitated electrodes in the sidewall of the microchannels is used for the generation of non-uniform electrical fields to generate negative DEP forces that repel beads/cells from the sidewalls. A countering DEP force is generated from another set of electrodes patterned on the opposing sidewall. These lateral negative DEP forces can be adjusted by the voltage and frequency applied. By manipulating the coupled DEP forces, the particles flowing through the microchannel can be positioned at different equilibrium points along the width direction and continue to flow into different outlet channels. Experimental results for switching biological cells and polystyrene microbeads to multiple outlets (up to 5) have been achieved. This novel particle switching technique can be integrated with other particle detection components to enable microfluidic flow cytometry systems.  相似文献   

18.
We present a novel, on-chip system for the electrokinetic capture of bacterial cells and their identification using the polymerase chain reaction (PCR). The system comprises a glass-silicon platform with a set of micro-channels, -chambers, and -electrodes. A platinum thin film resistor, placed in the proximity of the chambers, is used for temperature monitoring. The whole chip assembly is mounted on a Printed Circuit Board (PCB) and wire-bonded to it. The PCB has an embedded heater that is utilized for PCR thermal cycle and is controlled by a Lab-View program. Similar to our previous work, one set of electrodes on the chip inside the bigger chamber (0.6 microl volume) is used for diverting bacterial cells from a flowing stream into to a smaller chamber (0.4 nl volume). A second set of interdigitated electrodes (in smaller chamber) is used to actively trap and concentrate the bacterial cells using dielectrophoresis (DEP). In the presence of the DEP force, with the cells still entrapped in the micro-chamber, PCR mix is injected into the chamber. Subsequently, PCR amplification with SYBR Green detection is used for genetic identification of Listeria monocytogenes V7 cells. The increase in fluorescence is recorded with a photomultiplier tube module mounted over an epifluorescence microscope. This integrated micro-system is capable of genetic amplification and identification of as few as 60 cells of L. monocytogenes V7 in less than 90 min, in 600 nl volume collected from a sample of 10(4) cfu ml(-1). Specificity trials using various concentrations of L. monocytogenes V7, Listeria innocua F4248, and Escherichia coli O157:H7 were carried out successfully using two different primer sets specific for a regulatory gene of L. monocytogenes, prfA and 16S rRNA primer specific for the Listeria spp., and no cross-reactivity was observed.  相似文献   

19.
芯片介电电泳技术是以介电电泳(DEP)分离原理和微机电加工技术为依托发展起来的可用于生化样品分析的新型分析技术.本文概述了芯片介电电泳技术的发展和DEP芯片分析系统的构成,并以DEP操控模式为切入点,介绍了芯片介电电泳在生化样品分析中的应用情况.  相似文献   

20.
Wang X  Chen X  Ma X  Kong X  Xu Z  Wang J 《Talanta》2011,84(2):565-571
A novel fluid mixing strategy was developed which significantly enhanced the efficiency of DNA hybridization. A pneumatic micro-mixing device consisting of two pneumatic chambers and an underneath DNA microarray chamber was built up. The fluid in the array chamber was pneumatically pumped alternately by the two pneumatic chambers. The chaotic oscillatory flow caused by the pumping greatly intensified the fluidic mixing. A homogeneous distribution of the tracer dye solution in the microarray chamber was observed after 2 s mixing with a pumping frequency of 24 Hz. Microarray DNA hybridization was substantially accelerated using this device, and the fluorescence intensity showed a plateau after oscillating 30 s at room temperature. The corresponding signal level of the dynamic hybridization was 12.5-fold higher than that of the static hybridization performed at 42 °C. A signal-to-noise ratio of 117 was achieved and the nonspecific adsorption of the targets to the sample array was minimized, which might be attributed to the strong shearing force generated during the pneumatic mixing process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号