首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The interactions of simple carbohydrates with aromatic moieties have been investigated experimentally by NMR spectroscopy. The analysis of the changes in the chemical shifts of the sugar proton signals induced upon addition of aromatic entities has been interpreted in terms of interaction geometries. Phenol and aromatic amino acids (phenylalanine, tyrosine, tryptophan) have been used. The observed sugar-aromatic interactions depend on the chemical nature of the sugar, and thus on the stereochemistries of the different carbon atoms, and also on the solvent. A preliminary study of the solvation state of a model monosaccharide (methyl beta-galactopyranoside) in aqueous solution, both alone and in the presence of benzene and phenol, has also been carried out by monitoring of intermolecular homonuclear solvent-sugar and aromatic-sugar NOEs. These experimental results have been compared with those obtained by density functional theory methods and molecular mechanics calculations.  相似文献   

3.
Based on the structure of the regular heparin, we have prepared a smart library of heparin‐like trisaccharides by incorporating some sulfate groups in the sequence α‐D ‐GlcNS‐ (1‐4)‐α‐L ‐Ido2S‐(1‐4)‐α‐D ‐GlcN. According to the 3D structure of heparin, which features one helix turn every four residues, this fragment corresponds to the minimum binding motif. We have performed a complete NMR study and found that the trisaccharides have a similar 3D structure to regular heparin itself, but their spectral properties are such that allow to extract very detailed information about distances and coupling constants as they are isotropic molecules. The characteristic conformational equilibrium of the central iduronate ring has been analyzed combining NMR and molecular dynamics and the populations of the conformers of the central iduronate ring have been calculated. We have found that in those compounds lacking the sulfate group at position 6 of the reducing end glucosamine, the population of 2S0 of the central iduronate residue is sensitive to the temperature decreasing to 19 % at 278 K. On the contrary, the trisaccharides with 6‐O‐sulfate in the reducing end glucosamine keep the level of population constant with temperature circa 40 % of 2S0 similar to that observed at room temperature. Another structural feature that has been revealed through this analysis is the larger flexibility of the L ‐IdoAS‐ D ‐GlcN glycosidic linkage, compared with the D ‐GlcNS‐L ‐IdoA. We propose that this is the point where the heparin chain is bended to form structures far from the regular helix known as kink that have been proposed to play an important role in the specificity of the heparin–protein interaction.  相似文献   

4.
Mimicking Nature by using synthetic molecules that resemble natural products may open avenues to key knowledge that is difficult to access by using substances from natural sources. In this context, a novel N‐acetylchitooligosaccharide analogue, β1,3‐N‐acetamido‐gluco‐pentasaccharide, has been designed and synthesized by using aminoglucose as the starting material. A phthalic group has been employed as the protecting group of the amine moiety, whereas a thioalkyl was used as the leaving group on the reducing end. The conformational properties of this new molecule have been explored and compared to those of the its chito analogue, with the β1,3 linkages, by a combined NMR spectroscopic/molecular modeling approach. Furthermore, the study of its molecular recognition properties towards two proteins, a lectin (wheat germ agglutinin) and one enzyme (a chitinase) have also been performed by using NMR spectroscopy and docking protocols. There are subtle differences in the conformational behavior of the mimetic versus the natural chitooligosaccharide, whereas this mimetic is still recognized by these two proteins and can act as a moderate inhibitor of chitin hydrolysis.  相似文献   

5.
6.
7.
We report an exhaustive conformational and electronic study on dopamine (DA) interacting with the D2 dopamine receptor (D2DR). For the first time, the complete surface of the conformational potential energy of the complex DA/D2DR is reported. Such a surface was obtained through the use of QM/MM calculations. A detailed study of the molecular interactions that stabilize and destabilize the different molecular complexes was carried out using two techniques: Quantum Theory of Atoms in Molecules computations and nuclear magnetic shielding constants calculations. A comparative study of the behavior of DA in the gas phase, aqueous solution, and in the active site of D2DR has allowed us to evaluate the degree of deformation suffered by the ligand and, therefore, analyze how rustic are the lock-key model and the induced fit theory in this case. Our results allow us to propose one of the conformations obtained as the “biologically relevant” conformation of DA when it is interacting with the D2DR.  相似文献   

8.
The O‐antigen is the most variable and highly immunogenic part of the lipopolysaccharide molecule that covers the surface of Gram‐negative bacteria and makes up the first line of cellular defense. To provide insight into the details of the O‐antigen arrangement on the membrane surface, we simulated its behavior in solution by molecular dynamics. We developed the energetically favorable O‐antigen conformation by analyzing free‐energy distributions for its disaccharide fragments. Starting from this conformation, we simulated the behavior of the O‐antigen chain on long timescales. Depending on the force field and temperature, the single molecule can undergo reversible or irreversible coil‐to‐globule transitions. The mechanism of these transitions is related either to the rotation of the carbohydrate residues around O‐glycosidic bonds or to flips of the pyranose rings. We found that the presence of rhamnose in the O‐antigen chain crucially increases its conformational mobility.  相似文献   

9.
The specific interaction of a variety of modified hevein domains to chitooligosaccharides has been studied by NMR spectroscopy in order to assess the importance of aromatic-carbohydrate interactions for the molecular recognition of neutral sugars. These mutant AcAMP2-like peptides, which have 4-fluoro-phenylalanine, tryptophan, or 2-naphthylalanine at the key interacting positions, have been prepared by solid-phase synthesis. Their three-dimensional structures, when bound to the chitin-derived trisaccharide, have been deduced by NMR spectroscopy. By using DYANA and restrained molecular dynamics simulations with the AMBER 5.0 force field, the three-dimensional structures of the protein-sugar complexes have been obtained. The thermodynamic analysis of the interactions that occur upon complex formation have also been carried out. Regarding binding affinity, the obtained data have permitted the deduction that the larger the aromatic group, the higher the association constant and the binding enthalpy. In all cases, entropy opposes binding. In contrast, deactivation of the aromatic rings by attaching fluorine atoms decreases the binding affinity, with a concomitant decrease in enthalpy. The role of the chemical nature of the aromatic ring for establishing sugar contacts has been thus evaluated.  相似文献   

10.
X-ray crystallographic data of the carbohydrate mimic MDWNMHAA when bound to an anti-Shigella flexneri Y mAb SYA/J6 indicate the immobilization of water molecules, that is, the presence of "bound" waters, in the active site. Water Ligand Observed via Gradient Spectroscopy (WaterLOGSY) was used in conjunction with saturation transfer difference (STD)-NMR spectroscopy to probe the existence of immobilized water molecules in the complex of MDWNMHAA 1 bound to mAb SYA/J6. Molecular dynamics simulations using the ZymeCAD Molecular Dynamics platform were then used to specify the likely locations of these water molecules. Of note, those waters involved in providing complementarity between the peptide and mAb SYA/J6 remained throughout the course of the simulation. Together, the experimental and computational protocols have been used to identify the bound water molecules present in the antibody-peptide complex.  相似文献   

11.
All in a cluster : The selected sequence has a crucial influence on both the orientation and flexibility of the carbohydrate moiety in mucin‐type glycopeptides (see picture). This feature can be explained through the varied conformational behavior of the glycosidic linkage of the Thr residue when compared with the Ser residue (see figure). On this basis, and taking into account that these carbohydrates presumably interact with components of the immune system, these findings could be helpful in the design of new cancer vaccines.

  相似文献   


12.
The ties that bind: The incorporation of non-natural residues in the peptide backbone allows the design of O-glycosylation points in helical segments. This strategy could help to modulate the binding properties between glycopeptides and their protein receptors, such as lectins and antibodies.  相似文献   

13.
Galactoglucomannan (GGM) is a polysaccharide mainly consisting of mannose, glucose, and galactose. GGM is the most abundant hemicellulose in the Norway spruce (Picea abies), but is also found in the cell wall of flax seeds, tobacco plants, and kiwifruit. Although several applications for GGM polysaccharides have been developed in pulp and paper manufacturing and the food and medical industries, attempts to synthesize and study distinct fragments of this polysaccharide have not been reported previously. Herein, the synthesis of one of the core trisaccharide units of GGM together with a less‐abundant tetrasaccharide fragment is described. In addition, detailed NMR spectroscopic characterization of the model compounds, comparison of the spectral data with natural GGM, investigation of the acetyl‐group migration phenomena that takes place in the polysaccharide by using small model compounds, and a binding study between the tetrasaccharide model fragment and a galactose‐binding protein (the toxin viscumin) are reported.  相似文献   

14.
15.
The synthesis and conformational analysis in aqueous solution of different alpha-methyl-alpha-amino acid diamides, derived from serine, threonine, beta-hydroxycyclobutane-alpha-amino acids, and their corresponding model beta-O-glucopeptides, are reported. The study reveals that the presence of an alpha-methyl group forces the model peptides to adopt helix-like conformations. These folded conformations are especially significant for cyclobutane derivatives. Interestingly, this feature was also observed in the corresponding model glucopeptides, thus indicating that the alpha-methyl group and not the beta-O-glucosylation process largely determines the conformational preference of the backbone in these structures. On the other hand, atypical conformations of the glycosidic linkage were experimentally determined. Therefore, when a methyl group was located at the Cbeta atom with an R configuration, the glycosidic linkage was rather rigid. Nevertheless, when the S configuration was displayed, a significant degree of flexibility was observed for the glycosidic linkage, thus showing both alternate and eclipsed conformations of the psi(s) dihedral angle. In addition, some derivatives exhibited an unusual value for the phi(s) angle, which was far from a value of -60 degrees expected for a conventional beta-O-glycosidic linkage. In this sense, the different conformations exhibited by these molecules could be a useful tool in obtaining systems with conformational preferences "à la carte".  相似文献   

16.
17.
Broad and unspecific use of antibiotics accelerates spread of resistances. Sensitive and robust pathogen detection is thus important for a more targeted application. Bacteriophages contain a large repertoire of pathogen-binding proteins. These tailspike proteins (TSP) often bind surface glycans and represent a promising design platform for specific pathogen sensors. We analysed bacteriophage Sf6 TSP that recognizes the O-polysaccharide of dysentery-causing Shigella flexneri to develop variants with increased sensitivity for sensor applications. Ligand polyrhamnose backbone conformations were obtained from 2D 1H,1H-trNOESY NMR utilizing methine–methine and methine–methyl correlations. They agreed well with conformations obtained from molecular dynamics (MD), validating the method for further predictions. In a set of mutants, MD predicted ligand flexibilities that were in good correlation with binding strength as confirmed on immobilized S. flexneri O-polysaccharide (PS) with surface plasmon resonance. In silico approaches combined with rapid screening on PS surfaces hence provide valuable strategies for TSP-based pathogen sensor design.  相似文献   

18.
The conformational flexibility and dynamics of two (1→6)‐linked disaccharides that are related to the action of the glycosyl transferase GnT‐V have been investigated. NMR NOE and T‐ROE spectroscopy experiments, conformation‐dependent coupling constants and molecular dynamics (MD) simulations were used in the analyses. To facilitate these studies, the compounds were synthesised as α‐d‐ [6‐13C]‐Manp‐OMe derivatives, which reduced the 1H NMR spectral overlap and facilitated the determination of two‐ and three‐bond 1H,1H, 1H,13C and 13C,13C‐coupling constants. The population distribution for the glycosidic ω torsion angle in α‐d‐ Manp‐(1→6)‐α‐d‐ Manp‐OMe for gt/gg/tg was equal to 45:50:5, whereas in α‐d‐ Manp‐OMe it was determined to be 56:36:8. The dynamic model that was generated for β‐d‐ GlcpNAc‐(1→6)‐α‐d‐ Manp‐OMe by MD simulations employing the PARM22/SU01 CHARMM‐based force field was in very good agreement with experimental observations. β‐d‐ GlcpNAc‐(1→6)‐α‐d‐ Manp‐OMe is described by an equilibrium of populated states in which the ? torsion angle has the exo‐anomeric conformation, the ψ torsion angle an extended antiperiplanar conformation and the ω torsion angle a distribution of populations predominantly between the gauchetrans and the gauchegauche conformational states (i.e., gt/gg/tg) is equal to 60:35:5, respectively. The use of site‐specific 13C labelling in these disaccharides leads to increased spectral dispersion, thereby making NMR spectroscopy based conformational analysis possible that otherwise might be difficult to attain.  相似文献   

19.
The human lectin galectin‐1 (hGal‐1) translates sugar signals, that is, β‐galactosides, into effects on the level of cells, for example, growth regulation, and has become a model for studying binding of biopharmaceutically relevant derivatives. Bound‐state conformations of Galβ‐C‐(1→3)‐Glcβ‐OMe ( 1 ) and its βGal‐(1→3)‐βGlc‐OMe disaccharide parent compound were studied by using NMR spectroscopy (transferred (TR)‐NOESY data), assisted by docking experiments and molecular dynamics (MD) simulations. The molecular recognition process involves a conformational selection event. Although free C‐glycoside access four distinct conformers in solution, hGal‐1 recognizes shape of a local minimum of compound 1 , the synΦ/synΨ conformer, not the structure at global minimum. MD simulations were run to explain, in structural terms, the observed geometry of the complex.  相似文献   

20.
To bend about : The conformations of three phenyl‐C‐galactosides in solution were evaluated by using theoretical calculations and NMR spectroscopic studies. The α‐CF2 derivative (see scheme) showed significant flexibility of the pyranose ring and around the pseudoanomeric center, whereas the other two analogues more closely resemble the natural galactosides. Regardless, all three compounds bind to a plant lectin.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号