首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The metal-organic framework MIL-53(Al) was tested for selective adsorption and separation of xylenes and ethylbenzene, ethyltoluenes, and cymenes using batch, pulse chromatographic, and breakthrough experiments. In all conditions tested, MIL-53 has the largest affinity for the ortho-isomer among each group of alkylaromatic compounds. Separations of the ortho-compounds from the other isomers can be realized using a column packed with MIL-53 crystallites. As evidenced by Rietveld refinements, specific interactions of the xylenes with the pore walls of MIL-53 determine selectivity. In comparison with the structurally similar metal-organic framework MIL-47, the selectivities among alkylaromatics found for MIL-53 are different. Separation of ethyltoluene and cymene isomers is more effective on MIL-53 than on MIL-47; the pores of MIL-53 seem to be a more suitable environment for hosting the larger ethyltoluene and cymene isomers than those of MIL-47.  相似文献   

2.
The metal-organic frameworks MIL-47 (V(IV)O{O(2)C-C(6)H(4)-CO(2)}) and MIL-53(Al) (Al(III)(OH)·{O(2)C-C(6)H(4)-CO(2)}) are capable of separating ethylbenzene and styrene. Both materials adsorb up to 20-24 wt % of both compounds. Despite the fact that they have identical building schemes, the reason for preferential adsorption of styrene compared to ethylbenzene is very different for the two frameworks. For MIL-47, diffraction experiments reveal that styrene is packed inside the pores in a unique, pairwise fashion, resulting in separation factors as high as 4 in favor of styrene. These separation factors are independent of the total amount of adsorbate offered. This is due to co-adsorption of ethylbenzene in the space left available between the packed styrene pairs. The separation is of a non-enthalpic nature. On MIL-53, the origin of the preferential adsorption of styrene is related to differences in enthalpy of adsorption, which are based on different degrees of framework relaxation. The proposed adsorption mechanisms are in line with the influence of temperature on the separation factors derived from pulse chromatography: separation factors are independent of temperature for MIL-47 but vary with temperature for MIL-53. Finally, MIL-53 is also capable of removing typical impurities like o-xylene or toluene from styrene-ethylbenzene mixtures.  相似文献   

3.
The purification of p-xylene (pX) from its xylene isomers represents a challenging but important industrial process. Herein, we report the efficient separation of pX from its ortho- and meta- isomers by a microporous calcium-based metal–organic framework material (HIAM-203) with a flexible skeleton. At 30 °C, all three isomers are accommodated but the adsorption kinetics of o-xylene (oX) and m-xylene (mX) are substantially slower than that of pX, and at an elevated temperature of 120 °C, oX and mX are fully excluded while pX can be adsorbed. Multicomponent column breakthrough measurements and vapor-phase/liquid-phase adsorption experiments have demonstrated the capability of HIAM-203 for efficient separation of xylene isomers. Ab initio calculations have provided useful information for understanding the adsorption mechanism.  相似文献   

4.
The potential of the porous crystalline titanium dicarboxylate MIL-125(Ti) in powder form was studied for the separation in liquid phase of xylene isomers and ethylbenzene (MIL stands for Materials from Institut Lavoisier). We report here a detailed experimental study consisting of binary and multi-component adsorption equilibrium of xylene isomers in MIL-125(Ti) powder at low (≤0.8 M) and bulk (≥0.8 M) concentrations. A series of multi-component breakthrough experiments was first performed using n-heptane as the eluent at 313 K, and the obtained selectivities were compared, followed by binary breakthrough experiments to determine the adsorption isotherms at 313 K, using n-heptane as the eluent. MIL-125(Ti) is a para-selective material suitable at low concentrations to separate p-xylene from the other xylene isomers. Pulse experiments indicate a separation factor of 1.3 for p-xylene over o-xylene and m-xylene, while breakthrough experiments using a diluted ternary mixture lead to selectivity values of 1.5 and 1.6 for p-xylene over m-xylene and o-xylene, respectively. Introduction of ethylbenzene in the mixture results however in a decrease of the selectivity.  相似文献   

5.
汤雯淇  孟莎莎  徐铭  古志远 《色谱》2021,39(1):57-68
金属有机骨架材料(MOFs)是一类由有机配体和金属离子(或金属簇)自组装形成的新型多功能材料。MOFs具有孔隙度高、比表面积大、孔径可调、化学和热稳定性高等特点,被广泛应用于吸附、分离、催化等多个领域。近年来,MOFs作为新型气相色谱固定相用于分离异构体受到了广泛关注。与传统无机多孔材料相比,MOFs在结构和功能上展现出高度的可调性,通过合理地选择配体和金属中心,可以设计合成具有不同孔道大小和孔道环境的MOFs,从而分别从热力学和动力学角度优化色谱分离效果,有效提高分离选择性。该文结合MOFs的结构,讨论了MOFs气相色谱固定相分离不同类型分析物的分离机理。分离机理主要包括MOFs孔道的分子筛效应或形状选择性,MOFs不饱和的金属位点与分析物中不同的官能团之间产生的相互作用,分析物与MOFs孔道之间产生的不同范德华力、π-π相互作用和氢键相互作用。此外,MOFs的手性分离可能主要依赖于外消旋体与手性MOFs中手性活性位点之间的相互作用。该文也对不同分析目标物进行了归类,综述了多种MOFs气相色谱固定相对烷烃、二甲苯异构体和乙基甲苯、外消旋体、含氧有机物、环境有机污染物的气相色谱分离效果。最后,该文还对MOFs在该领域的应用进行了总结与展望,旨在为MOFs气相色谱高效分离的研究提供参考。  相似文献   

6.
Liquid-phase adsorption of benzothiophene over isotypic MOFs such as MIL-47 and MIL-53(Al, Cr) has shown that a metal ion of a MOF-type material has a dominant role in adsorptive desulfurization and MIL-47 has a remarkable performance.  相似文献   

7.
Impregnation of ionic nanostructured units in the pores of metal-organic frameworks (MOFs) is one approach to modify their host–guest interactions. Although, the effect of this approach is well investigated in catalysis, drug delivery, and bio imaging, still little is known about its impact on the selective adsorption properties of MOFs. Here we report the impregnation of two different polyoxometalate (POM) nanoclusters (PW11 and SiW11) into chromium terephthalate-based MOF, MIL-101(Cr), to investigate the post-impregnation changes in selective adsorption behavior, which are observed in terms of an important paraffin–olefin separation, using ethane and ethylene, at high pressure. The PW11 and SiW11 POMs bring π-accepting tendency and highly electronegative oxygen atoms on their surface to MIL-101 structure that selectively increases the affinity of material for ethylene, which is confirmed from isosteric heats of adsorption and selectivity calculation. Impregnated samples retain about 74–81 % of working adsorption capacity, after regeneration by decreasing the pressure. This study shows that anionic metal-oxide nanoclusters (POMs) may be used to change the selectivity of MOFs for olefin molecules.  相似文献   

8.
A distinct step in the isotherm occurs during the adsorption of CO2 on MIL-53 at 304 K. Such behavior is neither observed during the adsorption of CH4 on MIL-53 nor during the adsorption on the isostructural MIL-47. This phenomenon seems to be due to a different mechanism than that of previous adsorption steps on MOF samples. It is suggested that a breathing behavior is induced in MIL-53 during CO2 adsorption.  相似文献   

9.
胺类分子在CO2的捕获中可以起到选择性提升的作用,本文选择小尺寸的乙二胺分子对具有不饱和金属位点的轻金属铝基金属有机骨架(Al-MOFs)材料MIL-100Al进行改性,利用XRD、N2吸附和FT-IR等对改性材料的结构进行表征,测试了不同浓度的乙二胺改性的MIL-100Al对CO2和CH4吸附性能。结果表明,与原始的MIL-100Al材料相比,改性后的材料对CO2吸附量有明显提高,CH4的吸附量却降低,从而进一步提高了材料的CO2/CH4吸附选择性,提升了吸附分离的效果。  相似文献   

10.
胺类分子在CO_2的捕获中可以起到选择性提升的作用,本文选择小尺寸的乙二胺分子对具有不饱和金属位点的轻金属铝基金属有机骨架(Al-MOFs)材料MIL-100Al进行改性,利用XRD、N2吸附和FT-IR等对改性材料的结构进行表征,测试了不同浓度的乙二胺改性的MIL-100Al对CO_2和CH4吸附性能。结果表明,与原始的MIL-100Al材料相比,改性后的材料对CO_2吸附量有明显提高,CH4的吸附量却降低,从而进一步提高了材料的CO_2/CH4吸附选择性,提升了吸附分离的效果。  相似文献   

11.
A selection of metallocene inclusion compounds with channel structured MOFs (MOF = Metal-Organic Framework) were obtained via solvent-fee adsorption of the metallocenes from the gas-phase. The adsorbate structures ferrocene(0.5)@MIL-53(Al) (MIL-53(Al) = [Al(OH)(bdc)](n) with bdc = 1,4-terephthalate), ferrocene(0.25)@MIL-47(V) (MIL-47(V) = [V(O)(bdc)](n)), cobaltocene(0.25)@MIL-53(Al), cobaltocene(0.5)@MIL-47(V), 1-formylferrocene(0.33)@MIL-53(Al), 1,1'dimethylferrocene(0.33)@MIL-53(Al), 1,1'-diformylferrocene(0.5)@MIL-53(Al) were determined from powder X-ray diffraction data and were analyzed concerning the packing and orientation of the guest species. The packing of the ferrocene guest molecules inside MIL-47(V) is significantly different compared to MIL-53(Al) due to the lower breathing effect and weaker hydrogen bonds between the guest molecules and the host network in the case of MIL-47(V). The orientation of the metallocene molecule is also influenced by the substituents (CH(3) and CHO) at the cyclopentadienyl ring and the interaction with the bridging OH group of MIL-53(Al). The inclusion of redox active cobaltocene into MIL-47(V) leads to the formation of a charge transfer compound with a negatively charged framework. The reduction of the vanadium centers is stoichiometric. The resulting material is a mixed valence compound with a V(3+)/V(4+) ratio of 1:1. The new compounds were characterized via thermal gravimetric analysis, infrared spectroscopy, solid state NMR, and differential pulse voltammetry. Both systems are 1D-channel pore structures. The metallocene adsorbate induced breathing effect of MIL-53(Al) is more pronounced compared to MIL-47(V), this can be explained by the different bridging groups between the MO(6) clusters.  相似文献   

12.
Chemical and thermal stabilities of isotypic metal-organic frameworks (MOFs) like Al-BDC (Al-benzenedicarboxylate called MIL-53-Al), Cr-BDC (MIL-53-Cr) and V-BDC (MIL-47-V), after purification to remove uncoordinated organic linkers, have been compared to understand the effect of the central metal ions on the stabilities of the porous MOF-type materials. Chemical stability to acids, bases, and water decreases in the order of Cr-BDC>Al-BDC>V-BDC, suggesting stability increases with increasing inertness of the central metal ions. However, thermal stability decreases in the order of Al-BDC>Cr-BDC> V-BDC, and this tendency may be explained by the strength of the metal-oxygen bond in common oxides like Al(2)O(3), Cr(2)O(3), and V(2)O(5). In order to evaluate precisely the stability of a MOF, it is necessary to remove uncoordinated organic linkers that are located in the pores of the MOF, because a filled MOF may be more stable than the same MOF after purification.  相似文献   

13.
It is of great importance to establish a quantitative structure-property relationship model that can correlate the separation performance of MOFs to their physicochemical features. In complement to the existing studies that screened the separation performance of MOFs from the adsorption selectivity calculated at infinite dilution, this work aims to build a QSPR model that can account for the CO(2)/N(2) mixture (15:85) selectivity of an extended series of MOFs with a very large chemical and topological diversity under industrial pressure condition. It was highlighted that the selectivity for this mixture under such conditions is dominated by the interplay of the difference of the isosteric heats of adsorption between the two gases and the porosity of the MOF adsorbents. On the basis of the interplay map of both factors that impact the adsorption selectivity, strategies were proposed to efficiently enhance the separation selectivity of MOFs for CO(2) capture from flue gas. As a typical illustration, it thus leads us to tune a new MOF with outstanding separation performance that will orientate the synthesis effort to be deployed.  相似文献   

14.
Some potential adsorbents for ethylene/ethane separation are ethylene selective while the others are ethane selective. Among different adsorbents, i.e., zeolites and metal organic frameworks (MOFs), a comparative study is critical to find the more suitable adsorbent for the separation. In this paper, binary ethylene/ethane adsorption performances of zeolites and MOFs, i.e., equilibrium selectivities and adsorption capacities are investigated utilizing ideal adsorbed solution theory (IAST). IAST model is applied at different gas compositions (0.1–0.9 ethylene mole fractions) and pressures up to 100 kPa. The results revealed that the most selective adsorbent toward ethylene is 5A zeolite while MOFs have higher equilibrium adsorption capacities. Among zeolites and MOFs, 5A and Fe2(dobdc) have the highest selectivity (27.4 and 13.6) and capacity (≈2.8 and 5.8 mmol ethylene/g) at 100 kPa and 298 K for a 50/50 mixture. Among ethane selective adsorbents, Silicalite-1 zeolite and UTSA-33a (MOF) have the highest selectivity and capacity (≈2.9 and ≈1.5 mmol ethane/g) at 100 kPa and 298 K for a 50/50 mixture, respectively. Investigation showed that adsorption capacity of ethylene selective adsorbents is higher than that of ethane selective ones.  相似文献   

15.
We herein report a rigid nested metal–organic framework (MOF) featuring a unique thermoresponsive gating adsorption behavior, which, in contrast to any known flexibility modes for stimuli‐responsive MOFs, depends on the thermal motion of the extra‐framework counterions. In addition, this MOF also exhibits adsorption selectivity of CO2 over N2, H2, and Ar at 273 K, thus enabling a strategic separation and encapsulation of CO2.  相似文献   

16.
Metal-organic frameworks (MOFs), besides being porous materials exhibit a very rich chemistry, which can be used for the synthesis of composites and/or the reactive adsorption of toxic gases. In this study, composites of MOFs (MOF-5, HKUST-1 or MIL-100(Fe)) and a graphitic compound (graphite or graphite oxide, GO) were synthesized and tested for the removal of NH(3), H(2)S and NO(2) under ambient conditions. The materials were characterized before and after exposure to the target gases by X-ray diffraction, thermogravimetric analysis, N(2) sorption measurement and FT-IR spectroscopy. The results indicate that strong chemical bonds exist between the MOF and GO as a result of the coordination between the GO oxygen groups and the MOFs' metallic centers. Depending on the structure of the MOF, such interactions induce the formation of a new pore space in the interface between the carbon layers and the MOF units, which enhances the physical adsorption capacity of the toxic gases. When unsaturated metallic sites are present in the MOFs, the target gases are also adsorbed via coordination to these centers. Further reaction with the framework leads to the formation of complexes. This is accompanied by the collapse of the MOF structure.  相似文献   

17.
Vapor-phase adsorption and separation of the C8 alkylaromatic components p-xylene, m-xylene, o-xylene, and ethylbenzene on the metal-organic framework MIL-47 have been studied. Low coverage Henry adsorption constants and adsorption enthalpies were determined using the pulse chromatographic technique at temperatures between 230 and 290 degrees C. The four C8 alkylaromatic components have comparable Henry constants and adsorption enthalpies. Adsorption isotherms of the pure components were determined using the gravimetric technique at 70, 110, and 150 degrees C. The adsorption capacity and steepness of the isotherms differs among the components and are strongly temperature dependent. Breakthrough experiments with several binary mixtures were performed at 70-150 degrees C and varying total hydrocarbon pressure from 0.0004 to 0.05 bar. Separation of the different isomers could be achieved. In general, it was found that the adsorption selectivity increases with increasing partial pressure or degree of pore filling. The separation at a high degree of pore filling in the vapor phase is a result of differences in packing modes of the C8 alkylaromatic components in the pores of MIL-47.  相似文献   

18.
A Grand Canonical Monte Carlo study has been performed in order to compare the different CO2 adsorption mechanisms between two members of the MIL-n family of hybrid metal-organic framework materials. The MIL-53 (Al) and MIL-47 (V) systems were considered. The results obtained confirm that there is a structural interchange between a large pore and narrow pore forms of MIL-53 (Al), not seen with the MIL-47 (V) material, which is a consequence of the presence of μ 2-OH groups. The interactions between the CO2 molecules and these μ 2 OH groups mainly govern the adsorption mechanism in this MIL-53 (Al) material. The subsequent breaking of these adsorption geometries after the adsorbate loading increases past the point where no more preferred adsorption sites are available, are proposed as key features of the breathing phenomenon. After this, any new adsorbates introduced into the MIL-53 (Al) large pore structure experience a homogeneous adsorption environment with no preferential adsorption sites in a similar way to what occurs in MIL-47 (V).  相似文献   

19.
二甲苯作为石油化工行业中的基础原料,其应用价值很大且需求量逐年增加,因此二甲苯分离提纯的研究具有重要理论意义和工业应用价值.同时,二甲苯异构体分离被认为是改变世界的七大分离难题之一.金属有机骨架材料MIL-125是一种典型的含钛金属有机骨架材料,被广泛应用于光催化氧化和吸附分离中.目前传统金属有机骨架材料MIL-125的合成方法需要严格的无水操作环境以及无水级的超纯试剂.由于合成过程中钛源极易水解,很难控制其水解速率.本研究组提出了一种新的MIL-125的合成方法,该法引入了耐水解的含钛无机-有机杂化低聚物,并且可以稳定合成得到高结晶度且形貌规整的MIL-125.由于MIL-125材料本身在二甲苯异构体分离领域展现出的较大优势及潜力,将新方法合成的MIL-125进行了二甲苯分离性能评价,并对其选择性显著增强的原因和不同溶剂体系下分离性能的影响进行了探讨.为了考察新方法合成的MIL-125在液相中二甲苯的分离性能.在25℃的条件下进行了二甲苯异构体的单组分液相吸附实验.单组分等温吸附曲线结果表明,pX(对二甲苯)吸附量最多,其次是oX(间二甲苯)和mX(邻二甲苯),表明MIL-125吸附剂对pX的吸附能力最强,而对mX和oX的吸附能力相对较低.同时双组分竞争吸附实验得到pX/mX的竞争选择性高达13.6,pX/oX的选择性为8左右,这种选择性优于大多数对位选择性的多孔吸附剂材料.为了在更接近工业应用的条件下评估吸附剂的动态分离性能,在造粒后的MIL-125装填的吸附柱中进行了双组分等摩尔pX/mX穿透实验,穿透曲线显示了对pX和mX的理想分离效果,并再次证实该吸附剂对pX/mX具有较高的分离选择性.穿透实验后,用溶剂洗脱吸附柱,由于洗脱过程中mX的快速解吸,pX的纯度高达99.5%.在液相吸附实验和穿透实验中溶剂的选择会影响吸附剂骨架结构对二甲苯异构体分子的分离效果.因此本文通过实验和理论计算结合探讨了不同溶剂种类对MIL-125分离性能的影响.正庚烷和均三甲苯与二甲苯分子的微量热结果表明,二甲苯分子与均三甲苯的相互作用更弱,说明二甲苯分子与骨架的结合作用更强.使用DFT理论计算了不同溶剂体系下二甲苯分子与吸附剂间的相互作用能.在两种类型的溶剂中,pX与MIL-125骨架的相互作用能均低于mX,表明MIL-125更优先吸附pX.值得注意的是,当使用均三甲苯作为溶剂时,骨架与pX/mX之间相互作用能的差异更加明显,从而导致更明显的分离效果.由于规则的晶体形貌和高结晶度,改进方法合成的MIL-125比目前的对位选择性吸附剂具有更高的pX/mX选择性.进一步的量热实验和理论计算证实了不同类型的溶剂对于二甲苯吸附分离的影响.此外,该方法解决了钛源的易水解问题,并通过引入耐水解的含钛低聚物简化了MIL-125的合成条件,这将有助于进一步将MIL-125应用于二甲苯异构体的分离,同时也拓宽了其他新型含钛材料的应用领域.  相似文献   

20.
The adsorption of hydrogen in MOFs takes place mainly close to the inorganic secondary building unit (IBU). The adsorption capacities on MIL-88, UiO-66, MIL-47 and MFU-1 were investigated. Quantum chemical calculations at the ab initio HF/MP2 theoretical level were employed to estimate the maximum uptake of H(2) molecules per metallic centre. Extrapolating the results on small clusters to the unit cell of each particular MOF, the H(2) uptakes (gravimetric and volumetric) were estimated. The loading of hydrogen per metal atom (H(2) molecules/M-atom) and the density of metal atoms (M-atoms ?(-3)) were defined as useful parameters to assess hydrogen storage properties and to estimate the optimum density that the material should have to be a good H(2) adsorbent. It was found that values above 3 H(2) molecules/M-atom and around 0.004 M-atoms ?(-3) for MOFs with densities around 0.7-1.0 g cm(-3) are required to reach the 2015 storage targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号