首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
纤维素制取乙醇技术   总被引:1,自引:0,他引:1  
以纤维素为原料生产燃料乙醇由于其原料来源广泛及环保效益良好而被认为是最有前景的生产燃料乙醇的方法之一。以纤维素为原料生产乙醇主要包括水解和发酵两个转化过程。本文介绍了纤维素生产燃料乙醇的原理及工艺过程,同时讨论了各工艺过程需要解决的关键技术问题,分析了过程的经济性,最后介绍了国内外的应用现状,展望了纤维素生产燃料乙醇的产业化前景。  相似文献   

2.
纤维素制取乙醇技术   总被引:4,自引:0,他引:4  
以纤维素为原料生产燃料乙醇由于其原料来源广泛及环保效益良好而被认为是最有前景的生产燃料乙醇的方法之一.以纤维素为原料生产乙醇主要包括水解和发酵两个转化过程.本文介绍了纤维素生产燃料乙醇的原理及工艺过程,同时讨论了各工艺过程需要解决的关键技术问题,分析了过程的经济性,最后介绍了国内外的应用现状,展望了纤维素生产燃料乙醇的产业化前景.  相似文献   

3.
4.
Among the many types of lignocellulosic biomass pretreatment methods, the use of ionic liquids (ILs) is regarded as one of the most promising strategies. In this study, the effects of four kinds of ILs for pretreatment of lignocellulosic biomass such as bagasse, eucalyptus, and cedar were evaluated. In direct ethanol fermentation from biomass incorporated with ILs by cellulase-displaying yeast, 1-butyl-3-methylimidazolium acetate ([Bmim][OAc]) was the most effective IL. The ethanol production and yield from [Bmim][OAc]-pretreated bagasse reached 0.81 g/L and 73.4% of the theoretical yield after fermentation for 96 h. The results prove the initial concept, in which the direct fermentation from lignocellulosic biomass effectively promoted by the pretreatment with IL.  相似文献   

5.
Sugarcane bagasse hemicellulose was isolated in a one-step chemical extraction using hydrogen peroxide in alkaline media. The polysaccharide containing 80.9% xylose and small amounts of l-arabinose, 4-O-methyl-d-glucuronic acid and glucose, was hydrolyzed by crude enzymatic extracts from Thermoascus aurantiacus at 50?°C. Conditions of enzymatic hydrolysis leading to the best yields of xylose and xylooligosaccharides (DP 2-5) were investigated using substrate concentration in the range 0.5–3.5% (w/v), enzyme load 40–80 U/g of the substrate, and reaction time from 3 to 96 h, applying a 22 factorial design. The maximum conversion to xylooligosaccharides (37.1%) was obtained with 2.6% of substrate and xylanase load of 60 U/g. The predicted maximum yield of xylobiose by a polynomial model was 41.6%. Crude enzymatic extract of T. aurantiacus generate from sugarcane bagasse hemicellulose 39% of xylose, 59% of xylobiose, and 2% of other xylooligosaccharides.  相似文献   

6.
5-Hydroxymethylfurfural (HMF) and furfural (FF), two bio-based platform chemicals, were produced from various raw lignocellulosic materials (corncob, corn stover, wheat straw, rice straw and sugarcane bagasse) in a water-tetrahydrofuran media by using NaHSO4 as catalyst. The in fluences of reaction temperature (160-200 oC), reaction time (30-120 min), solvent volume ratio, feedstock concentration (2.4wt%-11.1wt%) and catalyst dosage were studied. The highest HMF and FF yields obtained from corncob were 47mol% and 56mol% under condition of 190 oC, 90 min, 10/1 of THF/H2O. Besides, the lignin in the raw biomass wasalso depolymerized into organosolv lignin.  相似文献   

7.
In recent years, production of engine fuels and energy from biomass has drawn much interest. In this work, we conducted a novel integrated process for the preparation of bio-hydrogen and bio-fuels using lignocellulosic biomass pyrolysis-oil (bio-oil). The process includes (i) the production of bio-hydrogen or bio-syngas by the catalytic cracking of bio-oil, (ii) the adjustment of bio-syngas, and (iii) the production of bio-fuels by ole nic polymerization (OP) together with Fischer-Tropsch synthesis (FTS). Under the optimal conditions, the yield of bio-hydrogen was 120.9 g H2/(kg bio-oil). The yield of hydrocarbon bio-fuels reached 526.1 g/(kg bio-syngas) by the coupling of OP and FTS. The main reaction pathways (or chemical processes) were discussed based on the products observed and the catalyst property.  相似文献   

8.
In the present work, we reported a novel route for the conversion of lignocellulosic biomass (sawdust) to a high-value chemical of benzoic acid under atmospheric pressure. The trans- formation involved the catalytic pyrolysis of sawdust into aromatics, the decomposition of heavier alkylaromatics to toluene, and the liquid-phase oxidation of toluene-rich aromatics to benzoic acid. The production of the desired benzoic acid from the sawdust-derived aro- matics, with the benzoic acid selectivity of 85.1 C-mol% and nearly complete conversion of toluene, was achieved using the MnO2/NHPI catalyst at 100 ℃ for 5 h. The in uence of adding methanol on the catalytic conversion of sawdust to the core intermediate of toluene was also investigated in detail.  相似文献   

9.
10.
李江  黄耀兵  郭庆祥  傅尧 《化学学报》2014,72(12):1223-1227
木质纤维基生物质是一类新的能够生产液体燃料和化学品的可再生资源. 本文研究了木质纤维生物质在水热条件下, 以少量无机酸作为酸催化剂, 氧气作为氧化剂(2.0 MPa), 经过"一锅两步法"转化成乙酸的反应. 以玉米秸秆作为反应原料时, 最高可以获得21.3 wt%的乙酸, 占据整个液体产物质量比例的84.6% (选择性). 同时, 将反应推广到玉米芯, 甘蔗渣, 竹子, 杨木和松木等多种生物质原料的转化, 同样取得了较高的乙酸产率. 最后, 我们对木质纤维生物质转化到乙酸的反应过程进行了研究. 研究表明木质纤维生物质中的碳水化合物六碳糖是乙酸的主要来源, 六碳糖经过脱水和水解生成乙酰丙酸中间体, 乙酰丙酸在氧化条件下断裂C-C键生成乙酸.  相似文献   

11.
A novel redox system, ascorbic acid-hydrogen peroxide, was employed to initiate graft copolymerization of ethyl acrylate and methyl methacrylate binary monomer mixtures onto Abelmoschus esculentus fibers at a temperature of 45°C for 90 min in an aqueous medium. Factors affecting grafting such as feed molarity and comonomer composition were investigated. Contrary to the lower affinity of methyl methacrylate for grafting on Abelmoschus fibers, a synergistic effect of ethyl acrylate on methyl methacrylate was observed when graft copolymers were prepared using different feed compositions (fMMA). The percentage of grafting increased from 40.2% to 89.74% at 0.4 mole fraction of fMMA. The graft copolymers were characterized by FT-IR, TGA, and SEM techniques.  相似文献   

12.
13.
Mixed fungal cultures used for making tempe, a fermented soy bean food, were screened for biomass conversion. Thirty-two zygomycetes strains from two tempe cultures were isolated and identified as Rhizopus, Mucor, Rhizomucor, and Absidia species based upon morphology. The dry weight biomass of these strains contained 49% to 63% protein and 10?C24% chitosan. The strains with the best growth performance were selected and registered at Culture Collection of Gothenburg University as Rhizomucor CCUG 61146 and Rhizomucor CCUG 61147. These strains were able to grow both aerobically and micro-aerobically. Their ethanol yields were 0.38?C0.47, 0.19?C0.22, and 0.31?C0.38?g/g on glucose, xylose, and a mix sugars consisting of cellobiose, glucose, xylose, arabinose, galactose, and mannose, respectively. The biomass yield of the strains varied between 65 and 140?mg dry weight/g glucose.  相似文献   

14.
A total of 34 cations belonging to 6 classes and 34 anions resulting in 1156 possible combinations are screened using the quantum chemical based COSMO-RS (COnductor-like Screening MOdel for Real Solvents) model. The Hildebrand solubility parameter (?? H) is calculated using the predicted infinite dilution activity coefficient (?? ??) of lignin in ionic liquids at 303.15 K. Initial benchmarking is performed by predicting the Hildebrand solubility parameter of lignin in ionic liquids. Comparison with literature values involving 12 ILs gives the average root mean square deviation (RMS) as 10.15?%. Except for anions based on hexafluorophosphate [PF6], bis(oxalato(2)borate) [BOB], tetracyanoborate [B(CN)4] and bis(trifluoromethylsulfonyl)amide [BTA], all the cation?Canion combinations have calculated solubility parameters equal to that of lignin at 303.15 K, indicating high solubilities for lignin.  相似文献   

15.
In this work, the xylanolytic profile of Leucoagaricus gongylophorus was studied, and two extracellular enzymes with xylanolytic activity (XyLg1 and XyLg2) were isolated, purified, and characterized. XyLg1 has a molecular mass of about 38 kDa and pI greater than 4.8. For beechwood xylan substrate, XyLg1 showed an optimum temperature of 40 °C, optimum pH between 8.5 and 10.5, and Km?=?14.7?±?7.6 mg mL?1. Kinetic studies of the XyLg1 using polygalacturonic acid as substrate were developed, and the enzyme showed optimum pH 5.5, optimum temperature between 50 and 60 °C, and Km?=?2.2?±?0.5 mg mL?1. XyLg2 has molecular weight of about 24 kDa and pI less than 4.8, and thus is an acid protein. Parameters such as optimum temperature (70 °C) and pH (4.0), as well as the kinetic parameters (Km?=?7.4?±?2.0 mg mL?1) using beechwood xylan as substrate, were determined for XyLg2. This enzyme has no activity for polygalacturonic acid as substrate. XyLg1 and XyLg2 are the first native xylanases isolated and characterized from L. gongylophorus fungi and, due to their biochemistry and kinetic features, they have potential to be used in biotechnological processes.  相似文献   

16.
The paper deals with the exploitation of Ipomoea carnea as a feedstock for the production of bioethanol. Dilute acid pretreatment under optimum conditions (3 %H2SO4, 120 °C for 45 min) produced 17.68 g L?1 sugars along with 1.02 g L?1 phenolics and 1.13 g L?1 furans. A combination of overliming and activated charcoal adsorption facilitated the removal of 91.9 % furans and 94.7 % phenolics from acid hydrolysate. The pretreated biomass was further treated with a mixture of sodium sulphite and sodium chlorite and, a maximum lignin removal of 81.6 % was achieved. The enzymatic saccharification of delignified biomass resulted in 79.4 % saccharification with a corresponding sugar yield of 753.21 mg g?1. Equal volume of enzymatic hydrolysate and acid hydrolysate were mixed and used for fermentation with a hybrid yeast strain RPRT90. Fermentation of mixed detoxified hydrolysate at 30 °C for 28 h produced ethanol with a yield of 0.461 g g?1. A comparable ethanol yield (0.414 g g?1) was achieved using a mixture of enzymatic hydrolysate and undetoxified acid hydrolysate. Thus, I. carnea biomass has been demonstrated to be a potential feedstock for bioethanol production, and the use of hybrid yeast may pave the way to produce bioethanol from this biomass.  相似文献   

17.
Fighting resistance to antibiotics and chemotherapeutics has brought bioactive peptides to the fore. Peptaibols are short α-aminoisobutyric acid-containing peptides produced by Trichoderma species. Here, we studied the production of peptaibols by Trichoderma atroviride O1 and evaluated their antibacterial and anticancer activity against drug-sensitive and multidrug-resistant bacterium and cancer cell lines. This was substantiated by an analysis of the activity of the peptaibol synthetase-encoding gene. Atroviridins, 20-residue peptaibols were detected using MALDI-TOF mass spectrometry. Gram-positive bacteria were susceptible to peptaibol-containing extracts of T. atroviride O1. A synergic effect of extract constituents was possible, and the biolo-gical activity of extracts was pronounced in/after the peak of peptaibol synthetase activity. The growth of methicillin-resistant Staphylococcus aureus was reduced to just under 10% compared to the control. The effect of peptaibol-containing extracts was strongly modulated by the lipoteichoic acid and only slightly by the horse blood serum present in the cultivation medium. Peptaibol-containing extracts affected the proliferation of human breast cancer and human ovarian cancer cell lines in a 2D model, including the multidrug-resistant sublines. The peptaibols influenced the size and compactness of the cell lines in a 3D model. Our findings indicate the molecular basis of peptaibol production in T. atroviride O1 and the potential of its peptaibol-containing extracts as antimicrobial/anticancer agents.  相似文献   

18.
This review covers the characteristics of pyrolysis and catalytic pyrolysis bio‐oils by focusing on the fundamental factors that determine bio‐oil upgradability. The abundant works on the subject of bio‐oil production from lignocellulosic biomass were studied to establish the essential attributes of the bio‐oils for assessment of the oil stability and upgradability. Bio‐oils from catalytic pyrolysis processes relating to catalysts of different compositions and structures are discussed. A general relationship between the higher heating value and the oxygen content in the catalytic pyrolysis oils exists, but this relationship does not apply to the thermal pyrolysis oil. Reporting bio‐oil yield is meaningful only when the oxygen content of the oil is measured because the pyrolytic oil stability is mainly determined by the oxygen content. Isoenergy plot that associates bio‐oil yield with oxygen content is presented and discussed.  相似文献   

19.
An actinomycete strain, isolated from a soil sample under a sugar cane plantation in Brazil and identified as Streptomyces viridobrunneus SCPE-09, was selected as a promising cellulolytic strain, and tested for its ability to produce cellulases from agro-industrial residues. Sugar cane bagasse or wheat bran was tested as carbon source, and corn steep liquor tested as nitrogen source. Different concentrations of carbon and nitrogen were tested using factorial design to identify optimal cellulose production. The results showed that media containing wheat bran 2.0% (w/v) and corn steep liquid 0.19% (w/v) lead to the highest production, 2.0 U mL−1 of CMCase, obtained on the fifth day of fermentation. The pH and temperature profile showed optimal activity at pH 4.9 and 50°C. As for thermostability, endoglucanases were most tolerant at 50°C, retaining more than 80% of maximal activity even after 2 h of incubation. Zymogram analyses using supernatant from growth under optimized conditions revealed the presence of two CMCase bands with apparent molecular masses of 37 and 119 kDa. The combination of pH tolerance and CMCase production from agro-industrial residues by S. viridobrunneus SCPE-09 offers promise for future bioethanol biotechnologies.  相似文献   

20.
Recovering hydrolysis enzymes and/or alternative enzyme addition strategies are two potential mechanisms for reducing the cost during the biochemical conversion of lignocellulosic materials into renewable biofuels and biochemicals. Here, we show that enzymatic hydrolysis of acid-pretreated pine wood with continuous and/or fed-batch enzyme addition improved sugar conversion efficiencies by over sixfold. In addition, specific activity of the hydrolysis enzymes (cellulases, hemicellulases, etc.) increased as a result of continuously washing the residual solids with removal of glucose (avoiding the end product inhibition) and other enzymatic inhibitory compounds (e.g., furfural, hydroxymethyl furfural, organic acids, and phenolics). As part of the continuous hydrolysis, anion exchange resin was tested for its dual application of simultaneous enzyme recovery and removal of potential enzymatic and fermentation inhibitors. Amberlite IRA-96 showed favorable adsorption profiles of inhibitors, especially furfural, hydroxymethyl furfural, and acetic acid with low affinity toward sugars. Affinity of hydrolysis enzymes to adsorb onto the resin allowed for up to 92 % of the enzymatic activity to be recovered using a relatively low-molar NaCl wash solution. Integration of an ion exchange column with enzyme recovery into the proposed fed-batch hydrolysis process can improve the overall biorefinery efficiency and can greatly reduce the production costs of lignocellulosic biorenewable products.
Figure
A semicontinuous process for the biochemical production of renewable products using detoxification and fed-batch enzyme addition/recycle can increase enzymatic hydrolysis and fermentation efficiencies. Hydrolysis enzymes, inhibitors, sugars, and water can be separated and utilized as high-value steams within the process  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号