首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A sensitive, specific, and rapid liquid chromatography?Celectrospray ionization?Ctandem mass spectrometry (LC?CESI?CMS?CMS) method was developed for determination of revaprazan in human plasma. Plasma samples were simply treated with methanol to precipitate, and then isolated supernatants were directly injected into the LC?CESI?CMS?CMS system. A Thermo Hypurity C18 column (150 × 2.1 mm, 5 ??m) with mobile phase of methanol?Cwater (70:30, v/v) containing 0.05% formic acid was used for chromatographic separation. Mass-spectrometric quantification was carried out in multiple reaction monitoring (MRM) mode, monitoring the m/z transitions 363.1 ?? 245.1 for revaprazan and 531.2 ?? 489.2 for ketoconazole (internal standard, IS) in positive ion mode. The linear calibration curves covered a concentration range of 2?C1,000 ??g L?1. The intra- and interday precisions (percentage relative standard deviation, RSD%) for revaprazan at three quality control levels were all <5%, and the accuracies were between 90% and 110%. The method has been successfully applied to a pharmacokinetic study involving 12 Chinese volunteers, and the main pharmacokinetic parameters of revaprazan in Chinese population are reported for the first time.  相似文献   

2.
A reversed-phase liquid chromatography coupled to tandem mass spectrometry (LC?CMS?CMS) method was developed and validated for the determination of fulvestrant in rat plasma. Sample preparation involved a liquid-liquid extraction using 1.0 mL of n-hexane?Cisopropanol (90:10, v/v) to extract the analyte from 0.1 mL of rat plasma. The analytes were separated on a phenyl-based column using the mobile phase consisting of methanol/water containing 5 mM ammonium acetate at the flow rate of 0.3 mL min?1. The analytes were monitored by tandem mass spectrometry under electrospray negative ionization mode. Linear calibration curves were generated over the fulvestrant concentration ranges of 0.05?C10.0 ng mL?1 in rat plasma. The accuracy and within- and between-day precisions were within the generally accepted criteria for bioanalytical methods (<15%). This developed and validated assay method was successfully employed to characterize the plasma concentration-time profile of fulvestrant after its intramuscular administration in rats at a dose of 10 mg kg?1.  相似文献   

3.
A fast, sensitive, and specific LC?CMS?CMS method for determination of quinine (QN) and doxycycline (DOX) in rat plasma has been developed and validated. QN, DOX, and cimetidine (internal standard, IS) were extracted from the plasma by protein precipitation. The compounds were separated on a C18 column with methanol?C0.1% aqueous formic acid 70:30 (v/v) as mobile phase at a flow rate of 0.5 mL min?1 (split 1:3). Detection was by positive electrospray ionization (ESI+) in multiple reaction monitoring (MRM) mode, monitoring the transitions 325.0 ?? 307.0, 445.0 ?? 428.1, and 252.8 ?? 159.0, for QN, DOX, and IS, respectively. The analysis was carried out in 2.0 min and the method was linear in the plasma concentration range 5?C5,000 ng mL?1. The mean extraction recoveries for QN, DOX, and IS from plasma were 89.4, 90.5, and 86.3%, respectively. The method was validated for linearity, precision, accuracy, specificity, and stability; the results obtained were within the acceptable range. The proposed method was successfully applied to the determination of QN and DOX in rat plasma samples to support pharmacokinetic studies.  相似文献   

4.
A sensitive and specific liquid chromatography?Celectrospray ionization?Ctandem mass spectrometry method has been developed and validated for the identification and quantification of brivudine in human plasma using diclofenac as an internal standard. The method involves extraction with ethyl acetate. The analyte was separated on a C18 column and analyzed in multiple reaction monitoring mode with a negative electrospray ionization interface using the [M?CH]? ions, m/z 332.8??m/z 80.9 for brivudine, m/z 293.6??m/z 249.5 for diclofenac. The method was validated over the concentration range of 5.54?C2,836 ??g L?1 for brivudine. The intra-and inter-day precisions were less than 8.91% in terms of relative standard deviation (RSD), and the accuracy was within ?4.22% in terms of relative error (RE). The lower limit of quantification (LLOQ) was 5.54 ??g L?1 with acceptable precision and accuracy. There were almost no matrix effects. Recovery of brivudine spiked in drug-free plasma was higher than 77.17%. The method was used to study the pharmacokinetic profile of brivudine in human plasma after oral administration of brivudine tablets.  相似文献   

5.
A rapid, sensitive and accurate ultra-performance liquid chromatography/tandem mass spectrometry method was developed and validated for the quantitative determination of imidol in rat plasma for the first time. The analyte and internal standard were extracted from plasma by liquid?Cliquid extraction with diethyl ether. The separation was performed on a BEH C18 column (50 mm × 2.1 mm, 1.7 ??m). The detection was carried out by electrospray ionization mass spectrometry in positive ion mode with multiple reaction monitoring. Linear calibration curves were obtained in the concentration range of 2.5?C2,500 ng mL?1, with the lower limit of quantification of 2.5 ng mL?1. The intra- and inter-day precision (RSD) values were below 8% and accuracy (RE) was from ?7.9 to 6.3%. After strict validation, the method was applied successfully to the pharmacokinetic study of imidol in rats after oral and intravenous administration, respectively.  相似文献   

6.
A sensitive and selective liquid chromatography?Ctandem mass spectrometry method for the determination of pethidine and atropine in rabbit plasma was developed and validated. The analytes and internal standard (IS) are extracted from plasma by liquid?Cliquid extraction using ethyl acetate, and separated on a Zorbax SB-Aq column (2.1 × 150 mm, 3.5 ??m) using acetonitrile?C0.1% formic acid as mobile phase with gradient elution. Electrospray ionization source was applied and operated in positive ion mode, and multiple reaction monitoring mode was used for quantification using target fragment ions m/z 247.8 ?? 219.7 for pethidine, m/z 289.9 ?? 123.8 for atropine and m/z 295.0 ?? 266.8 for IS, respectively. The assay is linear over the range of 5?C1,000 ng mL?1 for pethidine and atropine, with a lower limit of quantification of 3 ng mL?1 for pethidine and 5 ng mL?1 for atropine. Intra-day and inter-day precision are less than 11% and the accuracy are in the range of 90.4?C106.3%. Furthermore, the newly developed method is successfully used for the determination of pethidine and atropine in rabbit plasma for pharmacokinetic study.  相似文献   

7.
A sensitive and selective liquid chromatography–tandem mass spectrometry method for the determination of memantine was developed and validated over the linearity range 0.1–25 ng mL?1 with 0.5 mL of plasma using procainamide as the internal standard. This analysis was carried out on a Cosmosil 5C18-MS column and the mobile phase was composed of methanol: 0.5% formic acid (50:50, v/v). Detection was performed on a triple–quadrupole tandem mass spectrometer using positive ion mode electrospray ionization and quantification was performed by multiple reaction monitoring mode. The MS–MS ion transitions monitored were m/z 180 → 107 and 236 → 163 for memantine and procainamide, respectively. The between- and within-day precision was less than 10.9% and accuracy was less than 2.5%. The lower limit of quantification (LLOQ) was 0.1 ng mL?1. The method proved to be accurate and specific, and was applied to the pharmacokinetic study of memantine in healthy Chinese volunteers.  相似文献   

8.
A rapid and sensitive LC?CMS?CMS method for the simultaneous determination of escin Ia and isoescin Ia in rat plasma, urine, feces and bile samples was developed and validated. Analytes and telmisartan [internal standard (IS)] were extracted by solid-phase extraction on C18 cartridges. Components in the extract were separated on an HC-C18 column (5 ??m, 150 × 4.6 mm i.d.) using 10 mM ammonium acetate?Cmethanol?Cacetonitrile (40:30:30, v/v/v) as the mobile phase. The method demonstrated good linearity from 5 ng mL?1 (LLOQ) to 1,500 ng mL?1 for both escin Ia and isoescin Ia. Intra- and inter-day precision measured as RSD was within ±15%. Recoveries and matrix effects of both escin Ia and isoescin Ia were satisfactory in all four matrices examined. The method was successfully applied to a pharmacokinetic study in Wistar rats after a single intravenous administration of escin Ia at the dose of 1.0 mg kg?1.  相似文献   

9.
10.
A highly sensitive liquid chromatography–tandem mass spectrometry (LC–MS–MS) method for the determination of troxerutin in human plasma using tramadol as internal standard (IS) has been developed and validated. Sample preparation involved liquid–liquid extraction with ethyl acetate–isopropanol (95:5, v/v). The analyte and IS were separated by RP–LC with gradient elution using 10 mM ammonium acetate containing 0.1% formic acid and methanol at a flow rate of 0.9 mL min?1. LC–MS–MS in the positive ion mode employed multiple reaction monitoring of the transitions at m/z 743.2→435.3 and m/z 264.1→58.0 for troxerutin and IS, respectively. The assay was linear in the concentration range 0.01–10 ng mL?1 with precision and accuracy within assay variability limits as per FDA guidelines. The assay was successfully applied to a pharmacokinetic study involving oral administration of 300 mg troxerutin to eight healthy Chinese volunteers.  相似文献   

11.
A rapid, sensitive and accurate high performance liquid chromatography method using tandem mass spectrometry detection for hydralazine in BALB/C mouse plasma and brain was developed and validated. The method involved a derivatization with 2,4-pentanedione at 50 °C for 1 h, and a step of solid phase extraction to purify and concentrate hydralazine derivative. Chromatographic separation was carried out on an Agilent ZORBAX SB-C18 column by elution with methanol?C0.01 mol L?1 ammonium acetate (60:40, v/v). The multiple reaction monitoring transition used for quantification was m/z 225.2 ?? 129.5 in the electrospray positive ionization mode. Good linearity was obtained over the concentration range of 10?C200 ng mL?1. The limits of detection were 0.49 and 1.05 ng mL?1 for hydralazine in mouse plasma and brain, respectively. The limits of quantitation were 1.5 and 3.18 ng mL?1 for hydralazine in mouse plasma and brain, respectively. Sample analysis time was 6 min including sample separation. The method was successfully applied to a pharmacokinetic study following intraperitoneal injection of hydralazine in BALB/C mice at the dose of 20 mg kg?1.  相似文献   

12.
A rapid and sensitive LC?CMS?CMS method was developed for the quantification of amphotericin B in rabbit tears using natamycin as internal standard. The analyte and internal standard were extracted from the tear sample using a solid phase extraction method. Chromatographic separation was achieved on a Phenomenex Luna 3 ??m CN column (100 × 2 mm, 3 ??m) using 3.5 mM ammonium acetate (pH 4):methanol (10:90) as mobile phase. The assay was validated with a linear range of 0.1?C3.2 ??g mL?1 for amphotericin B using 10 ??L of tear sample. The intra- and inter-day assay precision ranged from 2.49 to 4.37 and 2.17 to 5.59%, respectively, and intra- and inter-day assay accuracy was between from 0.27 to 3.32 and ?0.51 to 3.72%, respectively. The method was successfully applied to the pharmacokinetic studies of amphotericin B eye drops in rabbit tears.  相似文献   

13.
A rapid, highly sensitive, and selective method was developed for the determination of the insecticide chlorantraniliprole (CAP) in corn and soil using ultra-performance liquid chromatography?Ctandem mass spectrometry (UPLC?CMS/MS). Samples were extracted with acetonitrile, and aliquots were cleaned with solid-phase extraction cartridges. Two precursor-product ion transitions for CAP were measured and evaluated to provide maximum confidence in the results. Average recovery for soil, corn grain, and corn straw at different levels (5 or 10, 40, and 100 ??g kg?1) ranged from 74.9 to 97.5%, with intra-day relative standard deviation (RSD) values of 1.9?C11.3% and inter-day RSD values of 4.7?C10.4%. Coefficients of determination (R 2) of 0.9988 or higher were achieved for CAP in soil, corn grain, and corn straw matrix calibration curves, from 5 to 1,000 ??g L?1. The CAP limits of quantitation in soil, corn grain, and straw were determined to be 5, 10, and 10 ??g kg?1, respectively, which were much lower than the maximum residue levels established by the Environmental Protection Agency of United States. UPLC?CMS/MS was used to determine the CAP residues in real corn and soil for studies on their dissipation. The trial results showed that the half-lives of CAP changed from 12.6 to 23.1 days in soils and ranged from 4.9 to 5.4 days in corn straws in the districts of Henan and Shandong, and the average levels of CAP residues in corn grains were all <0.01 mg kg?1 with a harvest withholding period of 180 days.  相似文献   

14.
15.
A liquid chromatography–tandem mass spectrometry (LC–MS–MS) method was developed for the simultaneous determination of paracetamol, pseudoephedrine and chlorpheniramine in human plasma. Diphenhydramine was used as the internal standard. Analytes were extracted from alkalized human plasma by liquid–liquid extraction (LLE) using ethyl acetate. After electrospray ionization positive ion fragments were detected in the selected reaction monitoring (SRM) mode with a triple quadrupole tandem mass spectrometer. The method was linear in the concentration range of 20.0–10000.0 ng mL?1 for paracetamol, 1.0–500.0 ng mL?1 for pseudoephedrine and 0.1–50.0 ng mL?1 for chlorpheniramine. The intra- and inter-day precisions were below 14.5% and the bias was between ?7.3 and +2.8% for all analytes. The validated LC–MS–MS method was applied to a pharmacokinetic study in which each healthy Chinese volunteer received a tablet containing 300 mg benorylate, 30 mg pseudoephedrine hydrochloride and 2 mg chlorpheniramine maleate. This is the first assay method described for the simultaneous determination of paracetamol, pseudoephedrine and chlorpheniramine in human plasma samples.  相似文献   

16.
Batifiban is a new platelet GPIIb/IIIa receptor antagonist. In this work, an analytical method based on liquid chromatography and electrospray ionization tandem mass spectrometry has been firstly developed and validated for the quantitative measurement of batifiban in human plasma to support the investigation of this compound. Separation of analyte and the internal standard eptifibatide was performed on a Thermo HyPURITY C18 column (150 × 2.1 mm, 5 μm) with a mobile phase consisting of formic acid 0.1% (v/v)–acetonitrile (40:60, v/v) at a flow rate of 0.25 mL min?1. The Waters QuattroMicro API triple quadrupole mass spectrometer was operated in multiple reaction monitoring mode via positive electrospray ionization interface using the transition m/z 819.2 → m/z (623.9 + 159.4) for batifiban and m/z 833.4 → m/z (645.7 + 159.3) for IS. The method was linear over the concentration range of 2.45–5,000 μg L?1. The intra- and inter- day precisions were less than 15% in terms of relative standard deviation, and the accuracy was within 8.5% in terms of relative error (RE). The lower limit of quantification (LLOQ) was identifiable and reproducible at 2.45 μg L?1 with acceptable precision and accuracy. The validated method offered sensitivity and wide linear concentration range. This method was successfully applied for the evaluation of pharmacokinetics of batifiban afer single oral doses of 55, 110 and 220 μg kg?1 batifiban to 36 Chinese healthy volunteers.  相似文献   

17.
A sensitive assay for determining SYUIQ-F5, a novel telomerase inhibitor and anti-tumor drug, in rat tissues and plasma was developed and validated by using liquid chromatography/tandem mass spectrometry (LC?CMS?CMS). After a single step liquid?Cliquid extraction with ethyl acetate-dichloromethane, SYUIQ-F5 and SUCL (internal standard) were subjected to LC?CMS?CMS analysis using positive electro-spray ionization under selected reaction monitoring mode. Chromatographic separation of SYUIQ-F5 and SUCL was achieved on a Zorbax Eclipse Plus C18 column (I.D. 4.6 mm × 150 mm, 3.5 ??m) with a mobile phase consisting of acetonitrile-2 mM ammonium formate (90:10, v/v) at a flow rate of 0.6 mL min?1. The intra- and inter-batch precision of the method were <12.2 and 8.7%, respectively. The intra- and inter-batch accuracies ranged from 100.2 to 107.3%. The lowest limit of quantification for SYUIQ-F5 was 0.5 ng mL?1. The method was applied to a SYUIQ-F5 tissue distribution study after an oral dose of 30 mg kg?1 to rats. SYUIQ-F5 tissue concentrations decreased in the order of small intestine> liver> lung> spleen> stomach> kidneys> heart> brain> muscle> fat> testes> plasma. SYUIQ-F5 could still be detected in most of the tissues at 48-h post-dosing. These results indicated that the LC?CMS?CMS method was sensitive, reliable, and specific to quantify SYUIQ-F5 in different rat tissues.  相似文献   

18.
A rapid, sensitive and specific assay method has been developed to simultaneously determine human plasma concentrations of hydrocodone and its metabolites, norhydrocodone, hydromorphone, using high-performance liquid chromatography with an electrospray ionization (ESI) tandem mass spectrometry (HPLC?CMS?CMS). Hydrocodone, its metabolites, and internal standard, hydrocodone-d 3, norhydrocodone-d 3, hydromorphone-d 3, were separated from human plasma using solid-phase extraction (Empore MPC-SD Solid Phase Extraction Disk). The eluate was dried, reconstituted and injected into the LC?CMS?CMS system. Chromatographic separation was performed on a Kromasil 100-5SIL-Dimensions C18 column (100 × 2.1 mm, 5.0 ??m, Thermo Hypersil-Keystone, USA) using a gradient mobile phase with 20 mmol L?1 ammonium formate in water with 0.2% formic acid and 0.1% formic acid in acetonitrile. Detection and quantitation were performed by MS/MS using electrospray ionization and multiple reactions monitoring in the positive ion mode. The calibration curves were linear over the concentration ranges 0.05?C50 ng mL?1 for hydrocodone (r 2 = 0.9991) and norhydrocodone (r 2 = 0.9990), and 0.01?C10 ng mL?1 for hydromorphone (r 2 = 0.9990). The limit of quantification was 0.05 ng mL?1 for hydrocodone and norhydrocodone, and 0.01 ng mL?1 for hydromorphone. The extraction recovery was above 64.36, 68.51 and 71.78% for hydrocodone, norhydrocodone and hydromorphone. The accuracy was higher than 99.06, 97.70 and 100.07% for hydrocodone, norhydrocodone and hydromorphone. The intra- and inter-day precisions were <5.80, 5.90 and 3.02% for hydrocodone, norhydrocodone and hydromorphone. The method was accurate, sensitive and simple and was successfully applied to a pharmacokinetic study after a single oral administration of hydrocodone bitartrate at a dose of 5 mg in 12 healthy Chinese volunteers.  相似文献   

19.
We developed a rapid and sensitive method for determining efavirenz, 8-hydroxyefavirenz, and 8,14-dihydroxyefavirenz in human plasma simultaneously using liquid chromatography?Ctandem mass spectrometry (LC?CMS?CMS). Three compounds and ritonavir, an internal standard, were extracted from plasma using ethyl acetate in the presence of 0.1 M sodium carbonate after incubation of ??-glucuronidase (500 U). After drying the organic layer, the residue was reconstituted in mobile phase (acetonitrile:20 mM ammonium acetate, 90:10, v/v) and injected onto a reversed-phase C18 column. The isocratic mobile phase was eluted at 0.2 mL min?1. The ion transitions monitored in multiple reaction-monitoring mode were m/z 314 ?? 244, 330 ?? 258, 346 ?? 262, and 721 ?? 296 for efavirenz, 8-hydroxyefavirenz, 8,14-dihydroxyefavirenz, and ritonavir, respectively. The retention time is 1.93, 1.70, 1.52, and 1.82 min for efavirenz, 8-hydroxyefavirenz, 8,14-dihydroxyefavirenz, and ritonavir, respectively. The coefficients of variation of the assay precision were less than 10.7%, and the accuracy was 90?C111%. The lower limits of quantification (LLOQ) were 5 ng mL?1 for efavirenz and 8-hydroxyefavirenz. This method was used to measure the plasma concentrations of efavirenz and its metabolites from healthy volunteers after a single 600 mg oral dose of efavirenz. This analytical method is a very rapid, sensitive, and accurate to determine the pharmacokinetic profiles of efavirenz including its metabolites.  相似文献   

20.
A specific, sensitive, and rapid method based on high-performance liquid chromatography coupled to tandem mass spectrometry (LC?CMS?CMS) was developed for determination of gefitinib in human serum and cerebrospinal fluid (CSF). The analyte was detected by tandem mass spectrometry operating in positive electrospray ionization mode with multiple reaction monitoring (MRM). Gefitinib was extracted from serum or CSF samples with ethyl acetate using icotinib as internal standard. The method was validated over the concentration range of 1.00?C1,000 ng mL?1 in human serum and 0.05?C50.0 ng mL?1 in CSF. For both matrices, inter- and intraday precision (CV%) were less than 15% and accuracy was within 85?C115%. Average extraction recoveries were 78.9 and 61.8% in human serum and CSF, respectively. Linearity, recovery, matrix effects, and stability were validated in the two matrices. The method was successfully used for analysis of clinical samples from lung cancer patients with brain metastases treated with gefitinib in the dosage range of 250?C500 mg day?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号