首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid and selective liquid chromatographic/tandem mass spectrometric method for the determination of JBP485 was developed and validated. Following protein precipitation, the analyte and internal standard (JBP923) were separated from human plasma using an isocratic mobile phase on an Elite Kromasil C18 column. An API 3200 tandem mass spectrometer equipped with a Turbo ionSpray ionization source was used as the detector and operated in the positive ion mode. Multiple reaction monitoring using the precursor to product ion combinations of m/z 201.2 ?? 86.2 and m/z 219.2 ?? 86.2 was performed to quantify JBP485 and JBP923, respectively. The method was linear in the concentration range of 0.10?C50.00 ??g mL?1 using 100 ??L of plasma. The lower limit of quantification was 0.10 ??g mL?1. The intra- and inter-day relative standard deviations over the entire concentration range were less than 6.65%. Accuracy determined at three concentrations (0.25, 4.00 and 25.00 ??g mL?1 for JBP485) ranged from ?0.78 to 2.74% in terms of relative error. Each plasma sample was chromatographed within 2.0 min. The method was successfully applied to characterize the pharmacokinetic profiles of JBP485 in rats after an intravenous injection of 6.25 mg kg?1 JBP485.  相似文献   

2.
(?)-Ephedrine (ephedrine, EPH) and (+)-ephedrine (pseudoephedrine, PEPH) are metabolized by the liver, but the species of hepatocyte cytochrome P450 (CYP450) responsible is not yet clear. To investigate which subtype of CYP450 is involved in the metabolism of EPH and PEPH, a rapid and reliable reversed-phase ion-pair liquid chromatographic method for simultaneous analysis of EPH and PEPH in rat liver microsomes has been established and validated. Matrine was selected as a suitable internal standard (IS) for calibration. After liquid?Cliquid extraction of liver microsomal samples with methyl tert-butyl ether, EPH and PEPH were separated on a C18 reversed-phase column (200 mm × 4.6 mm, 5 ??m) with methanol?C0.5% sodium dodecyl sulfate?Cphosphoric acid?Ctriethylamine 60:40:1.25:1 (v/v) as mobile phase at a flow rate of 1.0 mL min. Detection was by UV absorbance at 210.5 nm. For both EPH and PEPH, calibration curves were linear over the range 1.5?C60.0 ??g mL?1, the limit of quantification was 1.5 ??g mL?1, and intra-day and inter-day variability was <10.0%. Average extraction recovery of the two analytes was >73%. The validated method was successfully used to study the in-vitro metabolism of EPH and PEPH. In rat liver microsomes induced by dexamethasone, enzyme activity in the metabolism of EPH and PEPH was higher than that for metabolism of phenobarbital and ??-naphthoflavone.  相似文献   

3.
A sensitive and reliable reversed-phase liquid chromatography (RP-LC) with ultraviolet (UV) detection has been developed and validated for the quantification of Icariside II in rat plasma and tissues using Fermononetin as the internal standard. Protein precipitation and liquid?Cliquid extraction were utilized for plasma and tissue sample preparation, respectively. The analysis was successfully carried out on an Agilent SB-C18 column (5 ??m, 4.6 × 250 mm) with the implementation of the following conditions: a mobile phase of phosphoric acid solution (0.1%, v/w)?CAcetonitrile (55:45, v/v), a flow rate of 1 mL min?1, a column temperature of 25 °C and a detection wavelength of 270 nm. Good linear relationships of calibration curves were obtained (r 2 > 0.9906) over the investigated concentration range with plasma and tissue samples. The lower limit of quantification (LLOQ) and the limit of detection (LOD) were 0.1 and 0.02 ??g g?1, respectively (for plasma sample, they were 0.05 and 0.1 ??g mL?1, respectively). The developed method which was embodied with good precision, accuracy, recovery and stability was corroborated to satisfy the requirements for biomedical sample analysis. This method has been successfully applied to tissue distribution study of Icariside II in rats after a single intravenous dose at 12.5 mg kg?1. Results suggested that Icariside II was distributed to rat tissues rapidly with greater initial concentrations in kidney, lung and liver. Moderate initial distributions were obtained in rat muscle, heart, bone, spleen and plasma. Low amount of Icariside II was detected in testes, and no Icariside II could be detected in the brain.  相似文献   

4.
A stability-indicating LC method was developed for the simultaneous determination of ibuprofen and diphenhydramine citrate in pharmaceutical dosage forms. The chromatographic separation was achieved on an Inertsil ODS 3V, 150 × 4.6 mm, 5 μm, column. The mobile phase contained a mixture of 50 mM potassium dihydrogen phosphate buffer:acetonitrile:triethylamine:glacial acetic acid (55:45:0.2:0.2, v/v/v/v). This method allowed the determination of 2.85–9.14 mg mL?1 of ibuprofen and 0.54–1.73 mg mL?1 of diphenhydramine citrate, in a diluent consisting of pH 7.2, 50 mM potassium dihydrogen phosphate buffer:acetonitrile (40:60, v/v). The flow rate was 1.2 mL min?1 and the detection wavelength was 260 nm. The limit of detection for ibuprofen and diphenhydramine citrate was 1.72 and 0.54 μg mL?1 and the limit of quantification was 5.73 and 1.64 μg mL?1, respectively. This method was validated for accuracy, precision and linearity. The method was also found to be stability indicating.  相似文献   

5.
The combination of liquid phase microextraction (LPME) based on a single drop and gas chromatography flame ionization detector (GC-FID) was used for separation and determination of amitriptyline and nortriptyline in human plasma and urine samples. The sample solution was kept alkaline (pH 12), then a microdrop of organic solvent (isooctane) was suspended in the donor solution; after extraction, the organic microdrop was injected into the GC-FID. Experimental LPME conditions were optimized. Finally, the enrichment factors (89.5?C139.0), the relative standard deviation (RSD%, n = 5) 1.1?C8.5, linearity ranges (0.05?C20 ??g mL?1), and the limits of detections (0.01, 0.02 ??g mL?1) for selected drugs were evaluated.  相似文献   

6.
A simple, rapid, and selective method to determine the concentration of mildronate in human plasma and urine using ultra performance liquid chromatography?Ctandem mass spectrometry (UPLC-MS-MS) was developed and validated. The detection was performed on a triple-quadrupole tandem mass spectrometer by multiple reaction monitoring mode via electrospray ionization at m/z 147.2?C58.0 for mildronate and m/z 147.2?C87.8 for the internal standard, carbachol. The UPLC separation was carried out with a UPLC BEH HILIC column. The mobile phase consisted of 0.08% formic acid in 30 mM ammonium acetate solution and acetonitrile (23:77, v/v). Plasma samples were extracted from plasma by protein precipitation and urine samples were diluted with the mobile phase. The analysis time was 3.5 min for each sample. Linear calibration curves ranged from 0.10 to 100.00 ??g mL?1 in human plasma and 0.50 to 600.00 ??g mL?1 in urine. The method had been successfully applied to a pharmacokinetic study in healthy volunteers. After single intravenously administration of 250, 500, and 750 mg mildronate, the elimination half-life (t 1/2) were (2.74 ± 0.67), (4.86 ± 0.82) and (5.16 ± 0.77) h, respectively. The t 1/2 for the 250 mg dose did vary significantly with other dosages (P < 0.05), mildronate may have non-linear pharmacokinetics in humans.  相似文献   

7.
A novel sensitive and selective liquid chromatography-tandem mass spectrometry (LC-MS-MS) method simultaneously determined buprenorphine (BUP) and its active metabolite, norbuprenorphine (NBUP), and a coformulant, naloxone was developed, validated and applied successfully in humans. Buprenorphine-d 4 and norbuprenorphine-d 3 were used as the internal standard. The analysis was performed on a silica column, and the mobile phase was isocratic and composed of acetonitrile:2 mM ammonium formate in H2O (82:18, v/v). Mass spectrometry employed multiple reaction monitoring modes with transitions of m/z 468.1?C55.2 for BUP, 414.2?C101.2 for NBUP, 328.3?C310.3 for naloxone, 472.1?C59.2 for buprenorphine-d 4 and 417.2?C101.2 for norbuprenorphine-d 3. Lower limit of quantification (LLOQ) of the analytical method was 0.05 ng mL?1 for BUP, 0.1 ng mL?1 for NBUP and 0.025 ng mL?1 for naloxone, respectively. The standard calibration curves of BUP, NBUP and naloxone were linear over the concentration range of 0.05?C20 ng mL?1, 0.1?C20 ng mL?1 and 0.025?C20 ng mL?1, respectively. The precisions (RSD) and accuracies (RE) of LLOQ and other QC samples were in acceptable range, with RSD < 20% and RE ± 20% for LLOQ and RSD < 15% and RE within ±15% for QC samples. The method was accurate, precise and specific, and was applied to the pharmacokinetic study of buprenorphine in healthy volunteers.  相似文献   

8.
A specific and accurate high-performance liquid chromatographic method for analysis of cinnamic acid (CA) and paeonol (PN) in rat plasma has been developed and validated. Plasma samples were pretreated by protein precipitation with methanol, and the supernatant was injected for reversed-phase separation on a C18 column with acetonitrile–0.1% phosphoric acid 24:76 (v/v) as mobile phase at a flow-rate of 1.0 mL min?1. Phenylbutyric acid was used as the internal standard. Good linear relationships were obtained between response and concentration in the range 0.130–52.0 μg mL?1 (r = 0.9980) and 0.1785–71.4 μg mL?1 (r = 0.9950) for CA and PN, respectively. Intra-day and inter-day assay precision (RSD, n = 6) at three concentrations was not above 15.1% for either CA and PN, and accuracy was from 94.3 to 104.7% and from 103.3 to 113.1% for CA and PN, respectively. Mean recovery of CA and PN from plasma samples was 87.5 and 86.8%, respectively, and recovery of the internal standard at a concentration of 1.00 mg mL?1 was 88.5%. Results from a stability study suggested CA and PN were stable under the experimental conditions used. Finally, the validated method was successfully applied to a pharmacokinetic study of CA and PN in rats after intragastric administration of Guizhi–Fuling capsule. The results obtained would be very useful for evaluation of the clinical efficacy of GFC.  相似文献   

9.
A simple, rapid and highly sensitive capillary ion chromatographic method for direct determination of iodide and thiocyanate is reported. Separation was achieved on a laboratory-made capillary column (100 mm × 0.32 mm i.d.) packed with silica gel, followed by modification with 20 mM hexadimethrine bromide. Sodium perchlorate?Cmethanol (95:5, v/v) was used as the eluent and analyte anions were detected at 225 nm. Iodate, bromate, nitrate, iodide and thiocyanate were eluted within 8 min, with relative standard deviations of the retention time, peak area and peak height smaller than 2.4%. Effects of the eluent composition on the retention behavior were also investigated. The limit of detection (S/N = 3) of iodide was 6.5 ??g L?1, whereas that of thiocyanate was 16.2 ??g L?1. The method was successfully applied to the rapid and direct determination of iodide in powdered milk and thiocyanate in human saliva without any pre-concentration. The modified column could be used for about 1 month (8 h operation per day) without loss of hexadimethrine bromide.  相似文献   

10.
A GC-MS method with HP-5MS capillary column was developed for the simultaneous determination of underivatized flunitrazepam, clonazepam, alprazolam, diazepam and ketamine from drinks by extraction with chloroform: isopropanol 1:1 (v/v). All linearity ranges were between 50 and 1,000 μg mL?1 for all compounds both in beer and in peach juice. Limit of detection was between 1.3 and 34.2 μg mL?1, limit of quantification was between 3.9 and 103.8 μg mL?1, the range of recoveries was 73.0 and 112.6% for all drugs in both beverages. The reported method was sensitive, rapid, and suitable for the analysis of the spiked drinks as evidence of sexual assault and robbery phenomena.  相似文献   

11.
A sensitive liquid chromatography?Celectrospray ionization?Ctandem mass spectrometry (LC?CESI?CMS?CMS) method was developed and validated for the quantification of cepharanthine (CEP) in beagle dog plasma. The chromatographic separation was performed on an Agilent-C18 column and the mobile phase was composed of methanol:water with 10 mM ammonium acetate (20:80, v/v). Detection was operated in the positive ion mode and the tandem mass spectrometer was tuned in the multiple reactions monitoring mode (MRM) to monitor m/z transitions 607 ?? 365 for CEP and 285 ?? 193 for the internal standard (IS) diazepam. This method exhibited a linear range of 5?C2,500 ng mL?1. The precision (RSD%) and accuracy (RME%) of the assay were <8.7 and 2.4%, respectively. The limit of quantification was 5 ng mL?1 and no significant matrix effect was observed. The validated method has been successfully applied to pharmacokinetic study of CEP in beagle dog.  相似文献   

12.
A simple and rapid HPLC method using phenacetin (PHN) as internal standard has been developed for simultaneous determination of acetaminophen, caffeine, and chlorphenamine maleate in the product compound paracetamol and chlorphenamine maleate granules. Separation and quantitation were achieved on a 250 mm × 4.6 mm, 5 μm particle, C18 column. The mobile phase was methanol 0.05 mol L?1 aqueous KH2PO4 solution, 45:55 (v/v), containing 0.1% triethylamine and adjusted to pH 3.6 by addition of phosphoric acid; the flow rate was 1.0 mL min?1. Detection of all compounds was by UV absorbance at 260 nm and elution of the analytes was achieved in less than 12 min. The linearity, accuracy, and precision of the method were acceptable to good over the concentration ranges 6.4–153.6 μg mL?1 for acetaminophen, 5.0–120.0 μg mL?1 for caffeine, and 9.6–230.4 μg mL?1 for chlorphenamine maleate.  相似文献   

13.
A method for fast, sensitive, and specific hydrophilic interaction chromatography combined with tandem mass spectrometry (HILIC-MS/MS) was developed for the first time to determine the level of pidotimod in human plasma. With rosiglitazone as internal standard, analysis was carried out on a HILIC column (150 mm × 2.1 mm, 3.5 ??m) using a mobile phase consisting of methanol:0.2% formic acid (60:40, v/v). Detection was carried out by tandem mass spectrometry using electrospray ionization (ESI). Linear calibration curves were obtained in the concentration range of 11.2?C1.12 × 104 ng mL?1 for pidotimod, with a lower limit of quantification of 11.2 ng mL?1. The intra- and inter-day precision values were high, with standard deviations lower than 15%, and the accuracy, in terms of relative error, ranged from ?10.5 to 9.4% at all quality control (QC) levels.  相似文献   

14.
The dicarbonyl compounds glyoxal, methylglyoxal, and dimethylglyoxal have been separated by capillary GC on a 30 m × 0.32 mm i.d. HP-5 column after precolumn derivatization with 2,3-diamino-2,3-dimethylbutane at pH 4. Chromatographic separation was complete in 6 min. Nitrogen was used as carrier gas at a flow rate of 2 mL min?1. Split injection was performed with a split ratio of 10:1 (v/v). The derivatives were monitored by flame-ionization detection, and linear calibration plots were obtained in the ranges 0.06–0.69, 0.05–1.01, and 0.07–1.33 μg mL?1 for glyoxal, methylglyoxal, and dimethylglyoxal, respectively; the respective detection limits were 20, 10, and 10 ng mL?1. Glyoxal and methylglyoxal were analyzed in serum and urine from diabetics and from healthy volunteers. Amounts of glyoxal and methylglyoxal in serum from diabetic patients were 0.19–0.33 and 0.20–0.29 μg mL?1, respectively, with respective relative standard deviations (RSD) of 0.8–1.0 and 0.8–1.1%. Amounts of glyoxal and methylglyoxal in serum from healthy volunteers were 0.05–0.08 and 0.04–0.10 μg mL?1, respectively, with respective RSD of 0.9–1.2 and 1.0–1.2%. Levels of glyoxal and methylglyoxal in urine from diabetic patients were 0.18–0.40 and 0.25–0.36 μg mL?1, respectively.  相似文献   

15.
A fast, sensitive, and specific LC?CMS?CMS method for determination of quinine (QN) and doxycycline (DOX) in rat plasma has been developed and validated. QN, DOX, and cimetidine (internal standard, IS) were extracted from the plasma by protein precipitation. The compounds were separated on a C18 column with methanol?C0.1% aqueous formic acid 70:30 (v/v) as mobile phase at a flow rate of 0.5 mL min?1 (split 1:3). Detection was by positive electrospray ionization (ESI+) in multiple reaction monitoring (MRM) mode, monitoring the transitions 325.0 ?? 307.0, 445.0 ?? 428.1, and 252.8 ?? 159.0, for QN, DOX, and IS, respectively. The analysis was carried out in 2.0 min and the method was linear in the plasma concentration range 5?C5,000 ng mL?1. The mean extraction recoveries for QN, DOX, and IS from plasma were 89.4, 90.5, and 86.3%, respectively. The method was validated for linearity, precision, accuracy, specificity, and stability; the results obtained were within the acceptable range. The proposed method was successfully applied to the determination of QN and DOX in rat plasma samples to support pharmacokinetic studies.  相似文献   

16.
A simple, sensitive, selective, rapid, rugged, reproducible and specific liquid chromatography?Ctandem mass spectrometry (LC?CMS/MS) method was used for quantitative estimation of rizatriptan (RZ) in human plasma using rizatriptan-d 6 (RZD6) as internal standard (IS). Chromatographic separation was performed on Ascentis Express RP Amide C18, 50 × 4.6 mm, 2.7 ??m column with isocratic mobile phase composed of 10 mM ammonium formate:acetonitrile (20:80 v/v) at flow rate of 0.5 mL min?1. RZ and RZD6 were detected with proton adducts at m/z (amu) 270.2 ?? 201.2 and 276.1 ?? 207.1, respectively, in multiple reaction monitoring (MRM) positive mode. Liquid?Cliquid extraction was used and validated over a linear concentration range of 0.1?C100.0 ng mL?1 with correlation coefficient r 2 ?? 0.9981. The limit of quantification (LOQ) and limit of detection (LOD) were found to be 0.1 ng mL?1 and 12.5 fg, respectively. Intra- and inter-day precision were within 1.7?C3.1% and 2.8?C3.7%, and accuracy within 96.0?C101.7% and 99.7?C101.4% for RZ. Drug was found to be stable throughout three freeze?Cthaw cycles. The method was successfully employed for analysis of plasma samples following oral administration of RZ (10 mg) in 25 healthy Indian male human volunteers under fasting conditions.  相似文献   

17.
A rapid, selective and convenient liquid chromatography–mass spectrometric method for the simultaneous determination of paracetamol and caffeine in human plasma was developed and validated. Analytes and theophylline [internal standard (I.S.)] were extracted from plasma samples with diethyl ether-dichloromethane (3:2, v/v) and separated on a C18 column (150 × 4.6 mm ID, 5 μm particle size, 100 Å pore size). The mobile phase consisted of 0.2% formic acid–methanol (60:40, v/v). The assay was linear in the concentration range between 0.05 and 25 μg mL?1 for paracetamol and 10–5,000 ng mL?1 for caffeine, with the lower limit of quantification of 0.05 μg mL?1 and 10 ng mL?1, respectively. The intra- and inter-day precision for both drugs was less than 8.1%, and the accuracy was within ±6.5%. The single chromatographic analysis of plasma samples was achieved within 4.5 min. This validated method was successfully applied to study the pharmacokinetics of paracetamol and caffeine in human plasma.  相似文献   

18.
A simple, sensitive, precise and accurate reversed phase liquid chromatographic method has been developed for the simultaneous estimation of atorvastatin (AT) calcium, ramipril (RA) and aspirin (AS) from capsule dosage form. The method was developed using a Phenomenex Luna C18 (250 mm, 4.6 mm i.d., 5 µm) column with a mobile phase consisting of 0.1%, orthophosphoric acid buffer:acetonitrile:methanol (45:50:5 v/v/v), pH 3.3, at a flow rate of 1 mL min?1. Detection was carried out with ultra-violet detection at 210 nm. The retention times were about 12.19, 2.35, and 3.95 min for AT calcium, RA and AS, respectively. The developed method was validated for linearity, accuracy, precision, limit of detection, limit of quantitation and robustness. The linearity ranges were 1–6 µg mL?1 for AT calcium, 0.5–3 µg mL?1 for RA and 7.5–45 µg mL?1 for AS with mean recoveries of 100.59 ± 0.68, 100.62 ± 0.83 and 100.49 ± 0.73% for AT calcium, RA and AS, respectively. Limit of detection obtained were 29.85 ng mL?1 for AT calcium, 4.71 ng mL?1 for RA and 85.13 ng mL?1 for AS. Impurity of salicylic acid was found in capsule dosage form at the retention time of about 4.84 min. The proposed method can be used for the estimation of these drugs in combined dosage forms.  相似文献   

19.
A new, rapid, selective, cheap and simple RP-LC method has been developed and validated for the simultaneous determination of clobetasol propionate and calcipotriol mixtures in bulk drugs (raw materials) and in a novel-fixed dose emulgel formulation. Separation was carried out using a NovaPak C18 column with methanol:water (74:26 v/v) as mobile phase for isocratic elution at a flow rate of 1.0 mL min?1. The column temperature was set at 25 °C. Calibration curves were established ranging between 0.5 and 20 μg mL?1 and 0.5 and 10 μg mL?1 for clobetasol propionate and calcipotriol, respectively. Limit of detection and limit of quantification values of the method was found as 0.16 and 0.48 μg mL?1 for clobetasol propionate and 0.10 and 0.30 μg mL?1 for calcipotriol, respectively. The method was validated in accordance with ICH guidelines and obtained results proved that the proposed method was precise, accurate, selective and sensitive for the simultaneous analysis of clobetasol propionate and calcipotriol. The proposed method can be easily applied for the simultaneous determination of clobetasol propionate and calcipotriol in prepared emulgel formulations. The obtained validation results showed that the RP-LC method is suitable for routine quantification of clobetasol propionate and calcipotriol in emulgel formulations with high precision and accuracy.  相似文献   

20.
A rapid, sensitive and accurate high performance liquid chromatography method using tandem mass spectrometry detection for hydralazine in BALB/C mouse plasma and brain was developed and validated. The method involved a derivatization with 2,4-pentanedione at 50 °C for 1 h, and a step of solid phase extraction to purify and concentrate hydralazine derivative. Chromatographic separation was carried out on an Agilent ZORBAX SB-C18 column by elution with methanol?C0.01 mol L?1 ammonium acetate (60:40, v/v). The multiple reaction monitoring transition used for quantification was m/z 225.2 ?? 129.5 in the electrospray positive ionization mode. Good linearity was obtained over the concentration range of 10?C200 ng mL?1. The limits of detection were 0.49 and 1.05 ng mL?1 for hydralazine in mouse plasma and brain, respectively. The limits of quantitation were 1.5 and 3.18 ng mL?1 for hydralazine in mouse plasma and brain, respectively. Sample analysis time was 6 min including sample separation. The method was successfully applied to a pharmacokinetic study following intraperitoneal injection of hydralazine in BALB/C mice at the dose of 20 mg kg?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号