首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid, sensitive and accurate high performance liquid chromatography method using tandem mass spectrometry detection for hydralazine in BALB/C mouse plasma and brain was developed and validated. The method involved a derivatization with 2,4-pentanedione at 50 °C for 1 h, and a step of solid phase extraction to purify and concentrate hydralazine derivative. Chromatographic separation was carried out on an Agilent ZORBAX SB-C18 column by elution with methanol?C0.01 mol L?1 ammonium acetate (60:40, v/v). The multiple reaction monitoring transition used for quantification was m/z 225.2 ?? 129.5 in the electrospray positive ionization mode. Good linearity was obtained over the concentration range of 10?C200 ng mL?1. The limits of detection were 0.49 and 1.05 ng mL?1 for hydralazine in mouse plasma and brain, respectively. The limits of quantitation were 1.5 and 3.18 ng mL?1 for hydralazine in mouse plasma and brain, respectively. Sample analysis time was 6 min including sample separation. The method was successfully applied to a pharmacokinetic study following intraperitoneal injection of hydralazine in BALB/C mice at the dose of 20 mg kg?1.  相似文献   

2.
The purpose of this article was to develop a rapid and robust LC–MS–MS method for quantifying shikonin and deoxyshikonin simultaneously in rat plasma using emodin as internal standard. The LC system consisted of an Agilent ZORBAX SB-C18 (1.8 μm, 250 × 4.6 mm, 20 °C) column. Elution with an isocratic mobile phase consisted of methanol/10 mM ammonium acetate in water/acetonitrile containing 0.05% formic acid (45:10:45, v/v/v) at a flow rate of 0.8 mL min?1 yielded sharp, high-resolved peaks within 12 min. The lower limits of quantitation were 0.5 ng mL?1 for shikonin, and 8 ng mL?1 for deoxyshikonin. Correlation coefficient (r) values for the linear range of two analytes were greater than 0.99. Assay precision was <13% and accuracy was 87–99%. This newly developed method was used to the pharmacokinetic studies of the shikonin analogues in rats after intravenous administration (n = 4).  相似文献   

3.
A sensitive and selective liquid chromatography?Ctandem mass spectrometry method for the determination of pethidine and atropine in rabbit plasma was developed and validated. The analytes and internal standard (IS) are extracted from plasma by liquid?Cliquid extraction using ethyl acetate, and separated on a Zorbax SB-Aq column (2.1 × 150 mm, 3.5 ??m) using acetonitrile?C0.1% formic acid as mobile phase with gradient elution. Electrospray ionization source was applied and operated in positive ion mode, and multiple reaction monitoring mode was used for quantification using target fragment ions m/z 247.8 ?? 219.7 for pethidine, m/z 289.9 ?? 123.8 for atropine and m/z 295.0 ?? 266.8 for IS, respectively. The assay is linear over the range of 5?C1,000 ng mL?1 for pethidine and atropine, with a lower limit of quantification of 3 ng mL?1 for pethidine and 5 ng mL?1 for atropine. Intra-day and inter-day precision are less than 11% and the accuracy are in the range of 90.4?C106.3%. Furthermore, the newly developed method is successfully used for the determination of pethidine and atropine in rabbit plasma for pharmacokinetic study.  相似文献   

4.
A rapid, sensitive and specific assay method has been developed to simultaneously determine human plasma concentrations of hydrocodone and its metabolites, norhydrocodone, hydromorphone, using high-performance liquid chromatography with an electrospray ionization (ESI) tandem mass spectrometry (HPLC?CMS?CMS). Hydrocodone, its metabolites, and internal standard, hydrocodone-d 3, norhydrocodone-d 3, hydromorphone-d 3, were separated from human plasma using solid-phase extraction (Empore MPC-SD Solid Phase Extraction Disk). The eluate was dried, reconstituted and injected into the LC?CMS?CMS system. Chromatographic separation was performed on a Kromasil 100-5SIL-Dimensions C18 column (100 × 2.1 mm, 5.0 ??m, Thermo Hypersil-Keystone, USA) using a gradient mobile phase with 20 mmol L?1 ammonium formate in water with 0.2% formic acid and 0.1% formic acid in acetonitrile. Detection and quantitation were performed by MS/MS using electrospray ionization and multiple reactions monitoring in the positive ion mode. The calibration curves were linear over the concentration ranges 0.05?C50 ng mL?1 for hydrocodone (r 2 = 0.9991) and norhydrocodone (r 2 = 0.9990), and 0.01?C10 ng mL?1 for hydromorphone (r 2 = 0.9990). The limit of quantification was 0.05 ng mL?1 for hydrocodone and norhydrocodone, and 0.01 ng mL?1 for hydromorphone. The extraction recovery was above 64.36, 68.51 and 71.78% for hydrocodone, norhydrocodone and hydromorphone. The accuracy was higher than 99.06, 97.70 and 100.07% for hydrocodone, norhydrocodone and hydromorphone. The intra- and inter-day precisions were <5.80, 5.90 and 3.02% for hydrocodone, norhydrocodone and hydromorphone. The method was accurate, sensitive and simple and was successfully applied to a pharmacokinetic study after a single oral administration of hydrocodone bitartrate at a dose of 5 mg in 12 healthy Chinese volunteers.  相似文献   

5.
A simple, sensitive and rapid ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) method was developed and validated for the quantification of mitragynine in rat plasma using amitriptyline hydrochloride as an internal standard. Sample preparation involved a one-step liquid?Cliquid extraction using methyl t-butyl ether. Mitragynine was separated on an Acquity UPLC? BEH HILIC column using isocratic elution with a mobile phase of 10 mM ammonium formate buffer containing 0.1% formic acid:acetonitrile (15:85, v/v). At a flow rate of 0.2 mL min?1, the retention time of mitragynine was found to be 1.3 min. Ionization was performed in the positive ion electrospray mode. The selected mass-to-charge (m/z) ratio transition of mitragynine ion [M + H]+ used in the selected ion recording (SIR) was 399.1. The calibration curve was found to be linear over a concentration range of 1?C5,000 ng mL?1 (r = 0.999) with a lower limit of quantification (LLOQ) of 1 ng mL?1. Intra- and inter-day assay variations were found to be less than 15%. The extraction recoveries ranged from 85?C93% at the three concentrations (2, 400 and 4,000 ng mL?1) in rat plasma. This method was successfully used to quantify mitragynine in rat plasma following intravenous administration of the compound.  相似文献   

6.
A simple and sensitive liquid chromatographic assay with fluorescence detection assay was developed for the determination of zearalenone levels in rat serum. The assay utilized a single liquid–liquid extraction with t-butyl methyl ether and isocratic elution using a mobile phase consisting of acetonitrile and 0.1% triethylamine in distilled water (pH = 6) (50:50, v/v). Linearity was observed over a concentration range from 10 to 1,000 ng mL?1 (r = 0.9995), with the limit of quantification at 10 ng mL?1 with 100 μL of rat serum. The validated assay was applied to a pharmacokinetic study in rats.  相似文献   

7.
A selective, sensitive, and accurate method has been developed and validated for the quantification of tangeretin in rat plasma. The application of LC-electrospray-ion trap mass spectrometry in full scan and multiple reactions monitoring modes were investigated. Following solid phase extraction using a hydrophilic–lipophilic balance cartridge, the analytes were separated on a C18 column using an isocratic mobile phase composed of acetonitrile/water (50:50, v/v) containing 0.3% formic acid. In full scan mode, the LOQ was 2 ng mL?1. The standard calibration curve was linear (R 2 = 0.9999) over the concentration range 2–200 ng mL?1. The precision over the concentration range was within 15% (RSD) and the accuracy was ranged from 86 to 115%. In multiple reaction monitoring mode, the LOQ was 1 ng mL?1 and the standard calibration curve was linear (R 2 = 0.9976) over the concentration range 1–100 ng mL?1 with a precision of 12% and accuracy rangeing from 91 to 113%.  相似文献   

8.
A new method has been developed for the determination of metalaxyl, myclobutanil, and tebuconazole in environmental water samples with preconcentration by cartridges packed with SiO2 microspheres prior to LC. Several parameters such as the volume and composition of eluent, sample flow rate, sample pH, and sample volume were optimized. Under the optimal conditions, excellent detection limits (S/N = 3) and precision (RSD, n = 6) were 0.02 ng mL?1, 1.3% for metalaxyl, 0.02 ng mL?1, and 2.4% for myclobutanil and 0.08 ng mL?1 and 4.3% for tebuconazole, respectively. The method was applied to the analysis of real-water samples, and satisfactory results were obtained. The average spiked recoveries were in the range of 86.3–97.5%. These results indicate that SiO2 microspheres have great potential to be used as a novel solid phase extraction adsorbent that could have wide applications in the environmental field.  相似文献   

9.
A simple, sensitive, selective, rapid, rugged, reproducible and specific liquid chromatography?Ctandem mass spectrometry (LC?CMS/MS) method was used for quantitative estimation of rizatriptan (RZ) in human plasma using rizatriptan-d 6 (RZD6) as internal standard (IS). Chromatographic separation was performed on Ascentis Express RP Amide C18, 50 × 4.6 mm, 2.7 ??m column with isocratic mobile phase composed of 10 mM ammonium formate:acetonitrile (20:80 v/v) at flow rate of 0.5 mL min?1. RZ and RZD6 were detected with proton adducts at m/z (amu) 270.2 ?? 201.2 and 276.1 ?? 207.1, respectively, in multiple reaction monitoring (MRM) positive mode. Liquid?Cliquid extraction was used and validated over a linear concentration range of 0.1?C100.0 ng mL?1 with correlation coefficient r 2 ?? 0.9981. The limit of quantification (LOQ) and limit of detection (LOD) were found to be 0.1 ng mL?1 and 12.5 fg, respectively. Intra- and inter-day precision were within 1.7?C3.1% and 2.8?C3.7%, and accuracy within 96.0?C101.7% and 99.7?C101.4% for RZ. Drug was found to be stable throughout three freeze?Cthaw cycles. The method was successfully employed for analysis of plasma samples following oral administration of RZ (10 mg) in 25 healthy Indian male human volunteers under fasting conditions.  相似文献   

10.
In this study, for the first time, an organic solvent-free air-assisted liquid–liquid microextraction method has been reported for the extraction and preconcentration of phthalic acids (o-phthalic acid, m-phthalic acid, and p-phthalic acid) from edible oil samples. The method is based on the repeated aspirating/injection of an alkaline aqueous solution and the oil sample mixture in a conical bottom centrifuge tube to form a cloudy solution. After phase separation by centrifuging, the sedimented phase is directly analyzed by high-performance liquid chromatography–diode array detection. Under the optimum extraction conditions, the method showed low limits of detection and quantification between 0.11–0.29 and 0.28–0.91 ng mL?1, respectively. Extraction recoveries and enrichment factors were from 81 to 97% and 406 to 489, respectively. The relative standard deviations for the analysis of 5 ng mL?1 of each analyte were less than 5.9% for intraday (n = 6) and interday (n = 5) precisions. Finally, different oil samples were successfully analyzed using the proposed method and m-phthalic acid, and p-phthalic acid were determined in some of them at ng mL?1 level.  相似文献   

11.
A rapid and specific high-performance liquid chromatographic method coupled with electrospray ionization mass spectrometric detection has been developed and validated for identification and quantification of wogonin and oroxylin A in rat plasma. Wogonin, oroxylin A, and diazepam (internal standard) were extracted from plasma samples by liquid–liquid extraction with ethyl acetate. Chromatographic separation was achieved on a C18 column with acetonitrile–0.6% aqueous formic acid 35:65 (v/v) as mobile phase at a flow rate of 0.2 mL min?1. Detection was performed with a single-quadrupole mass spectrometer in selected-ion-monitoring (SIM) mode. Linearity was good within the concentration range 14.4–360 ng mL?1 for wogonin and 10.8–271 ng mL?1 for oroxylin A; the correlation coefficients (r 2) were 0.9999. The intra-day and inter-day precision, as RSD, was below 12.4%, and accuracy ranged from 81.1 to 111.9%. The lower limit of quantification was 14.4 ng mL?1 for wogonin and 10.8 ng mL?1 for oroxylin A. This method was successfully used in the first pharmacokinetic study of wogonin and oroxylin A in rat plasma after oral administration of the active fraction from Xiao-xu-ming decoction.  相似文献   

12.
In order to provide useful information for rational drug design, the ocular pharmacokinetics of l-carnosine (CAR) and its acetylized prodrug N-acetyl-l-carnosine (NAC) were investigated. The in vivo microdialysis sampling coupled with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS-MS) was developed for continuously simultaneous monitoring of CAR and NAC in rabbit aqueous humor. The measured in vitro recoveries of the probe were 61.3% for CAR and 65.8% for NAC, while in vivo recoveries decreased to 43.1% for CAR and 43.0% for NAC, respectively. The method was sensitive with LLOQ 20.5 ng mL?1 for CAR and 20.4 ng mL?1 for NAC. The initial data indicated that the value of C max and AUC(0?C??) of NAC were higher than these of CAR (C max 2305 vs. 1,802 ng mL?1), (AUC(0?C??) 1,337 vs. 1,891 ng h mL?1), which indicated that the NAC exhibited better ocular bioavailability and duration. The method was rapid, specific and sensitive for continuously monitoring of aqueous humor and it was successfully applied to pharmacokinetic studies of CAR and NAC.  相似文献   

13.
A simple, rapid and sensitive liquid chromatography/electrospray tandem mass spectrometry quantitative detection method, using amantadine as internal standard, was developed for the simultaneous analysis of paracetamol, pseudoephedrine and chlorpheniramine concentrations. Analytes were extracted from plasma samples by liquid–liquid extraction with n-hexane–dichloromethane–2-propanol (2:1:0.1, v/v), separated on a C18 reversed-phase column with 0.1% formic acid–methanol (40:60, v/v) and detected by electrospray ionization mass spectrometry in positive multiple reaction monitoring mode. Calibration curves for plasma were linear over the concentration range 10–10,000 ng mL?1 of paracetamol, 2–2,000 ng mL?1 of pseudoephedrine and 0.2–200 ng mL?1 of chlorpheniramine. The method has a lower limit of quantitation of 10 ng mL?1 for paracetamol, 2.0 ng mL?1 for pseudoephedrine and 0.2 ng mL?1 for chlorpheniramine. Recoveries, precision and accuracy results indicate that the method was reliable within the analytical range, and the use of the internal standard was very effective for reproducibility by LC-MS-MS. This method is feasible for the evaluation of pharmacokinetic profiles of a novel multicomponent sustained release formulation containing 325 mg of paracetamol, 30 mg of pseudoephedrine hydrochloride and 2 mg of chlorpheniramine maleate. It is the first time the pharmacokinetic evaluation of a novel sustained-action formulation containing paracetamol, pseudoephedrine and chlorpheniramine has been elucidated in vivo using LC-MS-MS.  相似文献   

14.
Specific LC-ESI-MS/MS method or procedure was developed and validated for columbianetin quantification in rat plasma using epicatechin as an internal standard (IS). Chromatographic separation was performed on an Eclipse plus C18 (150 × 4.6 mm, 1.8 ??m) at a flow rate of 0.300 mL min?1, and water-acetonitrile was used as mobile phase. The calibration curve of the method was linear in the concentration range of 5?C1,000 ng mL?1. The lower limit of quantification (LLOQ) was 5 ng mL?1. The intra- and inter-day precision of the quality control samples was within 15.0%, and the accuracy was within 90.0?C110%. The recoveries were more than 90.0% for columbianetin at concentrations of 10, 200 and 1,000 ng mL?1, respectively. This method was successfully applied for evaluation of the pharmacokinetics of columbianetin after oral doses of 0.60 g kg?1 Angelica pubescence extract in rats.  相似文献   

15.
A solid-phase extraction method for preconcentration of silver and consequent determination by atomic absorption spectrometry is described. The method is based on the retention of silver on sulfur modified with 2-mercaptobenzoxazole. The retained silver is eluted from the column with a thiourea solution and determined by flame atomic absorption spectrometry. The preconcentration conditions such as pH, amount of reagent loaded on sorbent, type of eluent and its volume, flow rate and interfering ions were investigated. The calibration graph was linear in the range of 3–200 ng mL?1 of Ag+ in the initial solution with r = 0.9985. The limit of detection based on 3Sb was 1.0 ng mL?1. The relative standard deviation for ten replicate measurements of 50 and 150 ng mL?1 of Ag+ was 4.1 and 1.4 %, respectively. The method was applied to the determination of silver in radiology film and water samples.  相似文献   

16.
《Analytical letters》2012,45(13):1764-1776
A rapid, sensitive, and specific high-performance liquid chromatography tandem mass spectrometric method was developed for the simultaneous determination and confirmation of amoxicillin and clavulanic acid in plasma. Plasma sample was subjected to a simple deproteinization with acetonitrile, and then the supernatant was directly diluted by water. Analysis was performed on a Phenomenex Luna C8 reversed-phase column by detection with mass spectrometry in negative ions multiple reaction monitoring mode. A gradient elution program with 0.1% formic acid and acetonitrile was performed at a flow of 0.25 mL min?1. There is good linearity in the range of 0.5–500 ng mL?1 for both amoxicillin and clavulanic acid. The decision limits of amoxicillin and clavulanic acid were 0.06 ng mL?1 and 0.08 ng mL?1 in plasma, respectively, and the detection capabilities of two analytes were below 0.5 ng mL?1. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The extraction recoveries of amoxicillin and clavulanic acid were between 102% and 115% in plasma at three spiked levels of 0.5, 50, and 500 ng mL?1, with the relative standard deviations less than 15% for each analyte. The developed method was applied to pharmacokinetic studies of amoxicillin and clavulanic acid tablets in healthy beagles.  相似文献   

17.
A fast and efficient method has been demonstrated for the trace determination of six important metabolites of synthetic pyrethroids including cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (cis- and trans-Cl2CA), cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (cis-Br2CA), 4-fluoro-3-phenoxybenzoic acid (4-F-3-PBA), 3-phenoxybenzoic acid (3-PBA), and 2-phenoxybenzoic acid (2-PBA) in environmental water samples using hollow fiber (HF)-mediated liquid-phase microextraction (LPME) coupled with in-syringe derivatization (ISD) followed by gas chromatography (GC) with electron capture detector (ECD) analysis. This method utilizes a HF membrane segment impregnated with extraction solvent as the LPME sampling probe, which was connected to a microsyringe pre-filled with derivatizing agents, and it was immersed into sample solution for extraction. After extraction, the extracting solution was subjected to derivatization reaction that was performed inside the syringe barrel followed by GC-ECD analysis. Under optimal conditions, the best extraction efficiency was obtained using sampling probe (2.0 cm hollow fiber) impregnated with 1-octanol immersed into water sample (5.0 mL, adjusted pH below 1.0) and stirring (1,250 rpm) for 10 min at 70 °C and diisopropylcarbodiimide (2 μL) and 1,1,1,3,3,3-hexafluoro-2-propanol (1 μL) were the derivatizing agents used. The detection limits of 3 ng mL?1 for cis- and trans-Cl2CA, 2 ng mL?1 for cis-Br2CA, 6 ng mL?1 for 4-F-3-PBA, and 0.6 ng mL?1 for 3-PBA and 2-PBA. The method showed good linearity (R 2 = 0.973?0.998), repeatability from 4.0 to 13 % (n = 5), recovery from 79.2 to 95.7 %, and enrichment factors ranged between 109 and 159 for target analytes spiked in water samples. The proposed method and conventional methods were compared. Results suggested that the proposed HF-LPME-ISD/GC-ECD method was a rapid, simple, inexpensive, and eco-friendly technique for the analysis of metabolites of pyrethroids.  相似文献   

18.
A simple, sensitive and specific liquid chromatographic method with UV detection (228 nm) was developed for the simultaneous estimation of rosiglitazone and glimepride in human plasma. Rosiglitazone and glimepride were extracted from plasma using liquid–liquid extraction. Separation was achieved with an RP C18 Column using a mixture of phosphate buffer (50 mM) with octane sulfonic acid (10 mM), methanol and acetonitrile as a mobile phase (55:10:35, v/v). pH was adjusted to 7.0. Amlodipine was used as an internal standard (IS). LOD of the method was found to be 20 ng mL?1 for both drugs. Results were linear over the studied range 40.994–2007.556 ng mL?1 for rosiglitazone (r ≥ 0.99) and 41.066–2094.84 ng mL?1 for glimepride( r ≥ 0.99). The method was found to be simple, selective, precise and reproducible for the estimation of both drugs from spiked human plasma.  相似文献   

19.
A sensitive, simple, and accurate method for determination and pharmacokinetic study of ferulic acid and isoferulic acid in rat plasma was developed using a reversed-phase column liquid chromatographic (RP-LC) method with UV detection. Sample preparations were carried out by protein precipitation with the addition of methanol, followed by evaporation to dryness. The resultant residue was then reconstituted in mobile phase and injected into a Kromasil C18 column (250 × 4.6 mm i.d. with 5 μm particle size). The mobile phase was methanol-1% formic acid (33:67, v/v). The calibration plots were linear over the range 5.780–5780 ng·mL?1 for ferulic acid and 1.740–348.0 ng·mL?1 for isoferulic acid. Mean recoveries were 85.1% and 91.1%, respectively. The relative standard deviations (RSDs) of within-day and between-day precision were not above 15% for both of the analytes. The limits of quantification were 5.780 ng·mL?1 for ferulic acid and 1.740 ng·mL?1 for isoferulic acid. This RP-LC method was used successfully in pharmacokinetic studies of ferulic acid and isoferulic acid in rat plasma after intravenous injection of Guanxinning Lyophilizer.  相似文献   

20.
A sensitive liquid chromatography?Cmass spectrometry method for the simultaneous determination of sertraline (SER) and its major metabolite norsertraline (NOR) from serum was developed and validated in the context of a pharmacokinetic study in pregnant women. The separations were achieved on a silica column with a non-aqueous polar mobile phase consisting of acetonitrile, methanol and ammonium acetate at a flow rate of 0.5 mL min?1. The concentrations were measured using a single quadruple mass spectroscopic detector supplied with atmospheric pressure ionization electrospray. Sample preparation consisted of a simple liquid?Cliquid procedure. The detector was set in selective ion mode for each compound of interest, 306 m/z for SER and 275 m/z for NOR. Calibration curves were generated by least square linear regression for concentration of 5?C160 ng mL?1 for SER and from 10 to 320 ng mL?1 for NOR. The curves for both compounds of interest were linear, with correlation coefficients r 2 ?? 0.999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号