首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let {X n : n ?? 1} be a strictly stationary sequence of positively associated random variables with mean zero and finite variance. Set $S_n = \sum\limits_{k = 1}^n {X_k }$ , $Mn = \mathop {\max }\limits_{k \leqslant n} \left| {S_k } \right|$ , n ?? 1. Suppose that $0 < \sigma ^2 = EX_1^2 + 2\sum\limits_{k = 2}^\infty {EX_1 X_k < \infty }$ . In this paper, we prove that if E|X 1|2+?? < for some ?? ?? (0, 1], and $\sum\limits_{j = n + 1}^\infty {Cov\left( {X_1 ,X_j } \right) = O\left( {n^{ - \alpha } } \right)}$ for some ?? > 1, then for any b > ?1/2 $$\mathop {\lim }\limits_{\varepsilon \searrow 0} \varepsilon ^{2b + 1} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^{b - 1/2} }} {{n^{3/2} \log n}}} E\left\{ {M_n - \sigma \varepsilon \sqrt {2n\log \log n} } \right\}_ + = \frac{{2^{ - 1/2 - b} E\left| N \right|^{2(b + 1)} }} {{(b + 1)(2b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2(b + 1)} }}}$$ and $$\mathop {\lim }\limits_{\varepsilon \nearrow \infty } \varepsilon ^{ - 2(b + 1)} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^b }} {{n^{3/2} \log n}}E\left\{ {\sigma \varepsilon \sqrt {\frac{{\pi ^2 n}} {{8\log \log n}}} - M_n } \right\}} _ + = \frac{{\Gamma (b + 1/2)}} {{\sqrt 2 (b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2b + 2} }}} ,$$ where x + = max{x, 0}, N is a standard normal random variable, and ??(·) is a Gamma function.  相似文献   

2.
Given a smooth domain ${\Omega\subset\mathbb{R}^N}$ such that ${0 \in \partial\Omega}$ and given a nonnegative smooth function ?? on ???, we study the behavior near 0 of positive solutions of ???u?=?u q in ?? such that u =? ?? on ???\{0}. We prove that if ${\frac{N+1}{N-1} < q < \frac{N+2}{N-2}}$ , then ${u(x)\leq C |x|^{-\frac{2}{q-1}}}$ and we compute the limit of ${|x|^{\frac{2}{q-1}} u(x)}$ as x ?? 0. We also investigate the case ${q= \frac{N+1}{N-1}}$ . The proofs rely on the existence and uniqueness of solutions of related equations on spherical domains.  相似文献   

3.
The following nontrivial estimate is obtained for short exponential sums: $$Sc\left( {\alpha ,x,y} \right) = \sum\limits_{x - y < n \leqslant x} {e\left( {\alpha \left[ {n^c } \right]} \right) < < y\ln ^A x,}$$ where $y \geqslant x^{\tfrac{1} {2}} \ln ^A x,x^{1 - c} y^{ - 1} \ln ^A x \leqslant \left| \alpha \right| \leqslant 0.5$ , c > 2 and ∥c∥ ≥ δ, A is a fixed positive number, and $\delta = \delta \left( {x,c,A} \right) = \left( {2^{\left[ c \right] + 1} - 1} \right)\left( {A + 2.5} \right) \cdot \frac{{\ln \ln x}} {{\ln x}}$ .  相似文献   

4.
The paper is devoted to the study of the weak norms of the classical operators in the vector-valued setting.
  1. Let S, H denote the singular integral involution operator and the Hilbert transform on $L^p \left( {\mathbb{T}, \ell _\mathbb{C}^2 } \right)$ , respectively. Then for 1 ≤ p ≤ 2 and any f, $$\left\| {\mathcal{S}f} \right\|_{p,\infty } \leqslant \left( {\frac{1} {\pi }\int_{ - \infty }^\infty {\frac{{\left| {\tfrac{2} {\pi }\log \left| t \right|} \right|^p }} {{t^2 + 1}}dt} } \right)^{ - 1/p} \left\| f \right\|p,$$ $$\left\| {\mathcal{H}f} \right\|_{p,\infty } \leqslant \left( {\frac{1} {\pi }\int_{ - \infty }^\infty {\frac{{\left| {\tfrac{2} {\pi }\log \left| t \right|} \right|^p }} {{t^2 + 1}}dt} } \right)^{ - 1/p} \left\| f \right\|p.$$ Both inequalities are sharp.
  2. Let P + and P ? stand for the Riesz projection and the co-analytic projection on $L^p \left( {\mathbb{T}, \ell _\mathbb{C}^2 } \right)$ , respectively. Then for 1 ≤ p ≤ 2 and any f, $$\left\| {P + f} \right\|_{p,\infty } \leqslant \left\| f \right\|_p ,$$ $$\left\| {P - f} \right\|_{p,\infty } \leqslant \left\| f \right\|_p .$$ Both inequalities are sharp.
  3. We establish the sharp versions of the estimates above in the nonperiodic case.
The results are new even if the operators act on complex-valued functions. The proof rests on the construction of an appropriate plurisubharmonic function and probabilistic techniques.  相似文献   

5.
We study limit behavior for sums of the form $\frac{1}{|\Lambda_{L|}}\sum_{x\in \Lambda_{L}}u(t,x),$ where the field $\Lambda_L=\left\{x\in {\bf{Z^d}}:|x|\le L\right\}$ is composed of solutions of the parabolic Anderson equation $$u(t,x) = 1 + \kappa \mathop{\int}_{0}^{t} \Delta u(s,x){\rm d}s + \mathop{\int}_{0}^{t}u(s,x)\partial B_{x}(s). $$ The index set is a box in Z d , namely $\Lambda_{L} = \left\{x\in {\bf Z}^{\bf d} : |x| \leq L\right\}$ and L = L(t) is a nondecreasing function $L : [0,\infty)\rightarrow {\bf R}^{+}. $ We identify two critical parameters $\eta(1) < \eta(2)$ such that for $\gamma > \eta(1)$ and L(t) = eγ t , the sums $\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)$ satisfy a law of large numbers, or put another way, they exhibit annealed behavior. For $\gamma > \eta(2)$ and L(t) = eγ t , one has $\sum_{x\in \Lambda_L}u(t,x)$ when properly normalized and centered satisfies a central limit theorem. For subexponential scales, that is when $\lim_{t \rightarrow \infty} \frac{1}{t}\ln L(t) = 0,$ quenched asymptotics occur. That means $\lim_{t\rightarrow \infty}\frac{1}{t}\ln\left (\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)\right) = \gamma(\kappa),$ where $\gamma(\kappa)$ is the almost sure Lyapunov exponent, i.e. $\lim_{t\rightarrow \infty}\frac{1}{t}\ln u(t,x)= \gamma(\kappa).$ We also examine the behavior of $\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)$ for L = e γ t with γ in the transition range $(0,\eta(1))$   相似文献   

6.
Let {ξi,-∞i∞} be a doubly infinite sequence of identically distributed-mixing random variables with zero means and finite variances,{ai,-∞i∞} be an absolutely summable sequence of real numbers and X k =∑i=-∞+∞ aiξi+k be a moving average process.Under some proper moment conditions,the precise asymptotics are established for  相似文献   

7.
We consider the question of evaluating the normalizing multiplier $$\gamma _{n,k} = \frac{1}{\pi }\int_{ - \pi }^\pi {\left( {\frac{{sin\tfrac{{nt}}{2}}}{{sin\tfrac{t}{2}}}} \right)^{2k} dt} $$ for the generalized Jackson kernel J n,k (t). We obtain the explicit formula $$\gamma _{n,k} = 2\sum\limits_{p = 0}^{\left[ {k - \tfrac{k}{n}} \right]} {( - 1)\left( {\begin{array}{*{20}c} {2k} \\ p \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {k(n + 1) - np - 1} \\ {k(n - 1) - np} \\ \end{array} } \right)} $$ and the representation $$\gamma _{n,k} = \sqrt {\frac{{24}}{\pi }} \cdot \frac{{(n - 1)^{2k - 1} }}{{\sqrt {2k - 1} }}\left[ {1\frac{1}{8} \cdot \frac{1}{{2k - 1}} + \omega (n,k)} \right],$$ , where $$\left| {\omega (n,k)} \right| < \frac{4}{{(2k - 1)\sqrt {ln(2k - 1)} }} + \sqrt {12\pi } \cdot \frac{{k^{\tfrac{3}{2}} }}{{n - 1}}\left( {1 + \frac{1}{{n - 1}}} \right)^{2k - 2} .$$ .  相似文献   

8.
The instability property of the standing wave uω(t, x) = eiωtφ(x) for the Klein–Gordon– Hartree equation  相似文献   

9.
Kayumov  I. R. 《Mathematical Notes》2004,76(3-4):472-477
In this paper, the following sharp estimate is proved: $$\int_{0}^{2{\pi }} {\left| {F\prime \left( {e^{i\theta } } \right)} \right|^p d\theta \leqslant \sqrt {\pi } 2^{1 + p} \frac{{\gamma \left( {{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2} + {p \mathord{\left/ {\vphantom {p 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}} {{\gamma \left( {1 + {p \mathord{\left/ {\vphantom {p 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}} ,\quad p > - 1,$$ where F is the conformal mapping of the domain $D^ - = \left\{ {\zeta :\left| \zeta \right| > 1} \right\}$ onto the exterior of a convex curve, with $F\prime \left( \infty \right) = 1$ . For p=1, this result is due to Pólya and Shiffer. We also obtain several generalizations of this estimate under other geometric assumptions about the structure of the domain F(D -).  相似文献   

10.
If $P(z) = \sum\limits_{\nu = 0}^n {c_\nu z^\nu } $ is a polynomial of degree n, then for |β| ≤ 1, it was proved in [4] that $\left| {zP'(z) + n\frac{\beta } {2}P(z)} \right| \leqslant n\left| {1 + \frac{\beta } {2}} \right|\mathop {\max }\limits_{|z| = 1} |P(z)|,|z| = 1 $ In this paper, first we generalize the above result for the s th derivative of polynomials and next we improve the above inequality for polynomials with restricted zeros.  相似文献   

11.
Let Ω ? 0 be an open bounded domain in R N (N ≥ 3) and $2^* (s) = \tfrac{{2(N - s)}} {{N - 2}}$ , 0 < s < 2. We consider the following elliptic system of two equations in H 0 1 (Ω) × H 0 1 (Ω): $$- \Delta u - t\frac{u} {{\left| x \right|^2 }} = \frac{{2\alpha }} {{\alpha + \beta }}\frac{{\left| u \right|^{\alpha - 2} u\left| v \right|^\beta }} {{\left| x \right|^s }} + \lambda u, - \Delta v - t\frac{v} {{\left| x \right|^2 }} = \frac{{2\beta }} {{\alpha + \beta }}\frac{{\left| u \right|^\alpha \left| v \right|^{\beta - 2} v}} {{\left| x \right|^s }} + \mu v,$$ where λ, µ > 0 and α, β > 1 satisfy α + β = 2*(s). Using the Moser iteration, we prove the asymptotic behavior of solutions at the origin. In addition, by exploiting the Mountain-Pass theorem, we establish the existence of solutions.  相似文献   

12.
We consider integral functionals in which the density has growth p i with respect to ${\frac{\partial u}{\partial x_i}}$ , like in $$\int\limits_{\Omega}\left( \left| \frac{\partial u}{\partial x_1}(x) \right|^{p_1} + \left|\frac{\partial u}{\partial x_2}(x)\right|^{p_2} + \cdots + \left|\frac{\partial u}{\partial x_n}(x) \right|^{p_n} \right) dx.$$ We show that higher integrability of the boundary datum forces minimizer to be more integrable.  相似文献   

13.
Let C(Q) denote the space of continuous functions f(x, y) in the square Q = [?1, 1] × [?1, 1] with the norm $\begin{gathered} \left\| f \right\| = \max \left| {f(x,y)} \right|, \hfill \\ (x,y) \in Q. \hfill \\ \end{gathered} $ On a Chebyshev grid, a cubature formula of the form $\int\limits_{ - 1}^1 {\int\limits_{ - 1}^1 {\frac{1} {{\sqrt {(1 - x^2 )(1 - y^2 )} }}f(x,y)dxdy = \frac{{\pi ^2 }} {{mn}}\sum\limits_{i = 1}^n {\sum\limits_{j = 1}^m {f\left( {\cos \frac{{2i - 1}} {{2n}}\pi ,\cos \frac{{2j - 1}} {{2m}}\pi } \right)} + R_{m,n} (f)} } } $ is considered in some class H(r 1, r 2) of functions f ?? C(Q) defined by a generalized shift operator. The remainder R m, n (f) is proved to satisfy the estimate $\mathop {\sup }\limits_{f \in H(r_1 ,r_2 )} \left| {R_{m,n} (f)} \right| = O(n^{ - r_1 + 1} + m^{ - r_2 + 1} ), $ where r 1, r 2 > 1; ???1 ?? n/m ?? ?? with ?? > 0; and the constant in O(1) depends on ??.  相似文献   

14.
Let Σ be an immersed symplectic surface in CP 2 with constant holomorphic sectional curvature k > 0. Suppose Σ evolves along the mean curvature flow in CP 2. In this paper, we show that the symplectic mean curvature flow exists for long time and converges to a holomorphic curve if the initial surface satisfies ${|A|^2 \leq \lambda|H|^2 + \frac{2\lambda-1}{\lambda}k}$ and ${\cos\alpha\geq\sqrt{\frac{7\lambda-3}{3\lambda}}\left(\frac{1}{2} < \lambda\leq\frac{2}{3}\right) {\rm or} |A|^2\leq \frac{2}{3}|H|^2+\frac{4}{5}k\cos\alpha\, {\rm and} \cos\alpha\geq 1-\varepsilon}$ , for some ${\varepsilon}$ .  相似文献   

15.
Let fL 1( $ \mathbb{T} $ ) and assume that $$ f\left( t \right) \sim \frac{{a_0 }} {2} + \sum\limits_{k = 1}^\infty {\left( {a_k \cos kt + b_k \sin kt} \right)} $$ Hardy and Littlewood [1] proved that the series $ \sum\limits_{k = 1}^\infty {\frac{{a_k }} {k}} $ converges if and only if the improper Riemann integral $$ \mathop {\lim }\limits_{\delta \to 0^ + } \int_\delta ^\pi {\frac{1} {x}} \left\{ {\int_{ - x}^x {f(t)dt} } \right\}dx $$ exists. In this paper we prove a refinement of this result.  相似文献   

16.
We consider the steady Navier–Stokes equations in the punctured regions (?) Ω?=?Ω 0 \ {o} (with {o}Ω 0) and (??) $ \varOmega ={{\mathbb{R}}^2}\backslash \left( {{{\overline{\varOmega}}_0}\cup \left\{ o \right\}} \right) $ (with $ \left\{ o \right\}\notin {{\overline{\varOmega}}_0} $ ), where Ω 0 is a simple connected Lipschitz bounded domain of $ {{\mathbb{R}}^2} $ . We regard o as a sink or a source in the fluid. Accordingly, we assign the flux $ \mathcal{F} $ through a small circumference surrounding o and a boundary datum a on Γ?=? 0 such that the total flux $ \mathcal{F}+\int\nolimits_{\varGamma } {\boldsymbol{a}\cdot \boldsymbol{n}} $ is zero in case (?). We prove that if $ \left| \mathcal{F} \right|<2\pi \nu $ and $ \left| \mathcal{F} \right|+\left| {\int\nolimits_{\varGamma } {\boldsymbol{a}\cdot \boldsymbol{n}} } \right|<2\pi \nu $ in (?) and (??), respectively, where ν is the kinematical viscosity, then the problem has a C solution in Ω, which behaves at o like the gradient of the fundamental solution of the Laplace equation.  相似文献   

17.
In this paper, we are concerned with the multibump solutions for the following quasilinear Schrödinger system in ${\mathbb{R}^N}$ : $$\left\{\begin{array}{ll}-\Delta{u} + \lambda{a(x)u} - \frac{1}{2}(\Delta|u|^2)u = \frac{2\alpha}{\alpha + \beta}|u|^{\alpha-2}|\upsilon|^\beta u, \\-\Delta{\upsilon} + \lambda{b(x)\upsilon} - \frac{1}{2}(\Delta|\upsilon|^2)\upsilon = \frac{2\beta}{\alpha + \beta}|u|^\alpha|\upsilon|^{\beta-2} \upsilon, \\u(x) \rightarrow 0, \upsilon(x) \rightarrow 0 \quad as|x| \rightarrow \infty,\end{array}\right.$$ where λ > 0 is a parameter, α, β > 2 satisfying αβ < 2 · 2*, here ${2^{*} = \frac{2N}{N-2}}$ is the critical Sobolev exponent for ${N \geq 3}$ and a(x), b(x) are nonnegative potentials. Using variational methods, we prove that if the zero sets of a(x) and b(x) have several common isolated connected components ${\Omega_{1}, . . . ,\Omega_{k}}$ such that the interior of ${\Omega_{i} (i = 1, 2, . . . , k)}$ is not empty and ${\partial\Omega_{i} (i = 1, 2, . . . , k)}$ is smooth, then for λ sufficiently large, the system admits, for any nonempty subset ${J \subset \{1, 2, . . . , k\}}$ , a solution which is trapped in a neighborhood of ${\cup_{j\epsilon{J}} \Omega_{j}}$ .  相似文献   

18.
We study the approximation of functions by linear polynomial means of their Fourier series with a function-multiplier φ that is equal to 1 not only at zero, in contrast with classical methods of summability. The exact order of convergence to zero of the sequence $$ \mathop{\max}\limits_{{x\in \left[ {-\pi, \pi } \right]}}\left| {f(x)-\sum\limits_{{\left| k \right|\leq n}} {\varphi \left( {\frac{{k\pi }}{n}} \right){{\hat{f}}_k}{e^{ikx }}} } \right| $$ ( $ {{\hat{f}}_k} $ Fourier coefficients) as n→∞ is obtained. The answer is given in terms of the values of difference operators of a continuous function f and a special K-functional (step of $ \frac{\pi }{n} $ ). In addition, we obtain not only the sufficient conditions for φ but the necessary ones as well.  相似文献   

19.
Let fC[?1, 1]. Let the approximation rate of Lagrange interpolation polynomial of f based on the nodes $ \left\{ {\cos \frac{{2k - 1}} {{2n}}\pi } \right\} \cup \{ - 1,1\} $ be Δ n + 2(f, x). In this paper we study the estimate of Δ n + 2(f,x), that keeps the interpolation property. As a result we prove that $$ \Delta _{n + 2} (f,x) = \mathcal{O}(1)\left\{ {\omega \left( {f,\frac{{\sqrt {1 - x^2 } }} {n}} \right)\left| {T_n (x)} \right|\ln (n + 1) + \omega \left( {f,\frac{{\sqrt {1 - x^2 } }} {n}\left| {T_n (x)} \right|} \right)} \right\}, $$ where T n (x) = cos (n arccos x) is the Chebeyshev polynomial of first kind. Also, if fC r [?1, 1] with r ≧ 1, then $$ \Delta _{n + 2} (f,x) = \mathcal{O}(1)\left\{ {\frac{{\sqrt {1 - x^2 } }} {{n^r }}\left| {T_n (x)} \right|\omega \left( {f^{(r)} ,\frac{{\sqrt {1 - x^2 } }} {n}} \right)\left( {\left( {\sqrt {1 - x^2 } + \frac{1} {n}} \right)^{r - 1} \ln (n + 1) + 1} \right)} \right\}. $$   相似文献   

20.
Timofeev  N. M.  Khripunova  M. B. 《Mathematical Notes》2004,76(1-2):244-263
Suppose that $${g\left( n \right)}$$ is an additive real-valued function, W(N) = 4+ $$\mathop {\min }\limits_\lambda $$ ( λ2 + $$\sum\limits_{p < N} {\frac{1}{2}} $$ min (1, ( g(p) - λlog p)2), E(N) = 4+1 $$\sum\limits_{\mathop {p < N,}\limits_{g(p) \ne 0} } {\frac{1}{p}.} $$ In this paper, we prove the existence of constants C1, C2 such that the following inequalities hold: $\mathop {\sup }\limits_a \geqslant \left| {\left\{ {n, m, k: m, k \in \mathbb{Z},n \in \mathbb{N},n + m^2 + k^2 } \right.} \right. = \left. {\left. {N,{\text{ }}g(n) \in [a,a + 1)} \right\}} \right| \leqslant \frac{{C_1 N}}{{\sqrt {W\left( N \right)} }},$ $\mathop {\sup }\limits_a \geqslant \left| {\left\{ {n, m, k: m, k \in \mathbb{Z},n \in \mathbb{N},n + m^2 + k^2 } \right.} \right. = \left. {\left. {N,{\text{ }}g(n) = a} \right\}} \right| \leqslant \frac{{C_2 N}}{{\sqrt {E\left( N \right)} }},$ . The obtained estimates are order-sharp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号