首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H Li  GS Ding  CY Yue  AN Tang 《Electrophoresis》2012,33(13):2012-2018
A novel and simple method for the preparation of silica nanoparticles having surface-functionalized diamino moiety (dASNPs) was reported in our paper and characterized using scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectrometry, and thermogravimetry techniques. To test this method practically, in this contribution we describe the enhanced separation of four plant auxins - indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), 2,4-dichlorophenoxyacetic acid (dCPAA), and 2-(1-naphthyl) acetic acid (NAA) - by capillary electrochromatography using diamino moiety functionalized silica nanoparticles as pseudostationary phase (PSP) in the running buffer. The effect of pH, buffer concentration, and diamino moiety functionalized silica nanoparticles concentration on the selectivity of separation was investigated. A combination of the nanoparticles and running buffer reversed the electroosmotic direction making possible the rapid and efficient separation of the auxins from the auxins migrated in the same direction with the EOF under optimum experimental conditions. A good resolution of four auxins was obtained within 5.5 min under optimum experimental conditions. The precision (RSD, n = 5) was in the range of 0.72-0.91% and 1.89-2.23% for migration time and peak area response, respectively. The detection limits were 0.48, 0.44, 0.46, and 0.42 μM for NAA, IBA, IAA, and dCPAA, respectively. Furthermore, the method was successfully tested for the determination of IAA in the grapes.  相似文献   

2.
In recent years, nanoparticles have gained more attention when used in separation science. In this study, chitosan‐modified silica nanoparticles were successfully synthesized and characterized by transmission electron microscopy, elemental analysis and zeta potential measurements, etc. When added into the running buffer solution as pseudo‐stationary phase in capillary electrophoresis, the separation of four representative auxins, i.e., indole‐3‐acetic acid, indole butyric acid, 2,4‐dichlorophenoxyacetic acid, 1‐naphthaleneacetic acid, was carried out. Some important factors, such as the nanoparticles concentration, the pH and concentration of the running buffer solution, were also investigated on the separation. Under optimized experimental conditions, all the auxins investigated can be baseline separated within 5 min with higher column performance. The method established can also be used for quantitative analysis. The relative standard deviations obtained for indole‐3‐acetic acid, indole butyric acid, 2,4‐dichlorophenoxyacetic acid, 1‐naphthaleneacetic acid were in the range of 1.6–5.7% for peak area and 0.53–1.60% for migration time. The calibration curves obtained from the peaks areas for auxins were linear in the range of 0.1–80 mg/L with the correlation coefficients of 0.994–0.999. The limit of detection (S/N = 3) was 11–75 μg/L. The developed method was also successfully used for the determination of auxins in fruits and vegetables samples with good recoveries.  相似文献   

3.
Amphiphilic silica nanoparticles surface-functionalized by 3-aminopropyltriethoxysilane (APTES) and octyltriethoxylsilane (OTES) were successfully prepared and characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR) and thermogravimetry (TG) techniques. The potential use of these bifunctionalized nanoparticles as pseudostationary phases (PSPs) in capillary electrophoresis (CE) for the separation of charged and neutral compounds was evaluated in terms of their suitability. As expected, fast separation of representative aromatic acids was fulfilled with high separation efficiency, because they migrate in the same direction with the electroosmotic flow (EOF) under optimum experimental conditions. Using a buffer solution of 30mmol/L phosphate (pH 3.0) in the presence of 0.5mg/mL of the synthesized bifunctionalized nanoparticles, the investigated basic compounds were baseline-resolved with symmetrical peaks. Due to the existence of amino groups on the surface of nanoparticles, "silanol effect" that occurs between positively charged basic analytes and the silanols on the inner surface of capillary was greatly suppressed. Furthermore, the separation systems also exhibited reversed-phase (RP) behavior when neutral analytes were tested.  相似文献   

4.
Auxin is an important phylohormone, which regulates specific physiological responses such as division, elongation and differentiation of cells. A new method using liquid chromatography/electrospray ionization ion trap mass spectrometry (LC/ESI-ITMS) has been developed for identification and quantitation of four auxins. Under the optimum conditions, four auxins (indole-3-acetic acid, indole-3-propionic acid, indole-3-butyric acid and 1-naphthylacetic acid) were completely separated and quantitated within 7 min with a minimum detection limit of 8.0 ng mL(-1) with relative standard deviations lower than 5.0%. This method also has been applied to analysis of auxins in Chinese cabbage where, even with a complicated serious background perturbation due to the natural biological matrix, the mean recoveries ranged from 77.5% to 99.8%. Finally, we discuss the MS-relevant properties of the identified auxins in detail.  相似文献   

5.
A novel, simple, and economical method for the preparation of open-tubular capillary column using polydopamine coating was reported for the first time. After the capillary was filled with dopamine solution for 20h, polydopamine was formed and deposited on the inner wall of capillary as permanent coating via the oxidation of dopamine by the oxygen dissolved in the solution. Moreover, the electroosmotic flow of the coated capillaries was measured to be dependent on the repetitive coating times. The performance of the polydopamine-coated capillary electrochromatography was validated by the analysis of four auxins, indole-3-butyric acid (IBA), 2,4-dichlorophenoxyacetic acid (dCPAA), indole-3-acetic acid (IAA), and phenoxyacetic acid (PAA). The precisions (RSD, n=5) were in the range of 1.6-2.4% for migration time, 4.0-6.5% for peak area response, and 3.6-4.7% for peak height response for the four auxins at 1microgmL(-1) level. The detection limits were 0.185, 0.172, 0.177, and 0.259microg/mL for IBA, dCPAA, IAA, and PAA, respectively. The method was successfully used to the determination of IAA in the culture media of IAA-producing bacteria.  相似文献   

6.
Abstract

Countercurrent chromatography (CCC) has been successfully applied for the separation of plant hormones; namely, indole auxins, gibberellins, cytokinins and abscisic acid. In our present study three different types of CCC devices were evaluated for their performance in separation of plant hormones with a special emphasis on analysis and purification of abscisic acid (ABA). A large-scale preparative CCC apparatus consisting of a slowly rotating coil assembly was used for preliminary separations of ABA from a large volume of crude plant extracts. The toroidal coil planet centrifuge (CPC) for analytical-scale separations was subsequently applied for purification of ABA, the final confirmation being obtained by HPLC and combined gas chromatographic-mass spectrometric method. This two-step procedure utilizing preparative CCC and toroidal CPC was successfully applied for determination of ABA content in several plant tissues. A recently introduced high-speed CCC apparatus was tested for semipreparative separation of ABA and indole-3-acetic acid. The method yielded high peak resolution within 2 hours.  相似文献   

7.
The low concentrations of the auxins in samples of plant tissue necessitate the use of selective and sensitive techniques for their quantification. Herein a selective and sensitive method based on dual-cloud point extraction (dCPE) and tertiary amine labeling for the quantification of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) by capillary electrophoresis-electrochemiluminescence (CE-ECL) is proposed. The procedure for dCPE included two cloud point processes with Triton X-114 as the extractant. The two auxins became hydrophobic in an acidic solution and were extracted into surfactant-rich phase after the first cloud point procedure. They were then back-extracted into the alkaline aqueous phase during the second cloud point step. The extracted auxins were reacted with 2-(2-aminoethyl)-1-methylpyrrolidine (AEMP) in acetonitrile that contained N,N′-dicyclohexylcarbodiimide and 3,4-dihydro-3-hydroxy-4-oxo-1,2,3-benzotriazine to produce their AEMP-derivatives. The two auxin-AEMP-derivatives were subjected into CE and detected by Ru(bpy)32+-based ECL. The preconcentration factors for IAA and IBA with dCPE were 40.5 and 43.4, respectively. The on-capillary detection limits (S/N = 3) were 2.5 and 2.8 nM for IAA and IBA. This protocol presents a clear advantage in that it reduces the interference from the matrixes extensively and gives a high sensitivity for the detection of auxins. The proposed method was applied successfully to the detection of the two auxins in acacia tender leaves, buds, and bean sprout.  相似文献   

8.
During the past decades, research has been performed to enhance selectivity in CE by introducing different types of additives into the electrolyte. Research concerning this has taken many directions, especially during the last 5 years. A promising technique, which benefits from no packing or frits, is to use nanoparticles as the pseudostationary phase (PSP) in CEC. PSPs have the advantage of introducing a novel interaction phase for every analysis, which greatly simplify column exchange and circumvent contamination inherited from complex mixtures, e.g., biological samples. The field of nanoparticle-based PSPs used in CEC is covered in this review. The term CEC will be used consequently throughout this review, although some authors used the term EKC to categorize their work. Important requirements for the nanoparticles used and possible reasons for band broadening will be discussed. Applications with silica nanoparticles, polymer nanoparticles, molecularly imprinted polymer nanoparticles, gold nanoparticles, dendrimers, and polymeric surfactants as PSP will also be discussed.  相似文献   

9.
Abstract— The thiophenyl ester of indole-3-acetic acid and indole-3-acetonitrile produce chemiluminescence in aerated dimethylsulfoxide in the presence of potassium t -butoxide. The emitter is the aromatic aldehyde. In the case of acetonitrile, the other product expected from the cleavage of an intermediate dioxetane, cyanate/isocyanate, has also been identified. Other auxins also chemiluminesce under similar conditions, but the emitters have not been properly identified.
These systems are models for the peroxidase catalyzed oxidation of indole-3-acetic acid to indole-3-carboxaldehyde and as such support the earlier inference (Vidigal et al , 1975) that the excited aldehyde is generated in the enzymic process.
An additional result is the observation of an exciplex between excited indole-3-carboxaldehyde and the thiophenylester of indole-3-acetic acid. This appears to be the first case of chemical generation of an exciplex by a route other than radical ion reaction, presumably by the dioxetane route.  相似文献   

10.
Nanoparticles (NPs) can be used as pseudostationary phases (PSPs) in EKC, which is similar to the use of micelle additives as applied in MEKC. To date, the use of NPs to enhance enantiomeric separation by EKC with β‐CD or its derivative as chiral selector has been reported only in two papers. However, to the best of our knowledge, there has been no prior effort to use NPs for achieving enantioseparation with polysaccharides as chiral selector. This paper describes for the first time the use of carbon nanoparticles (CNPs) as PSPs to modify chiral separation system employing dextrin as chiral selector for the enantioseparations of several basic drugs in capillary EKC. Three different types of CNPs, including carbogenic nanoparticles (NPs), carboxylated single‐walled carbon nanotubes, and carboxylated multiwalled carbon nanotubes, were used as running buffer additives, respectively. The potential of the PSPs and the effects of dextrin concentration, buffer pH, and buffer concentration on the enantioseparations were evaluated. Four pairs of tested enantiomers were successfully resolved in less than 15 min with the resolution values in the range of 1.41–4.52 under optimized conditions. Compared to the buffer without NPs, the introduction of NPs into the buffer enhanced the separation of the enantiomers.  相似文献   

11.
In this work,a new sample pretreatment method prior to HPLC separations was developed for the determination of auxins in plant samples.Owing to its large surface area and high adsorption capacity, multi-walled carbon nanotube(MWCNT) was chosen as the adsorbent for the extraction of auxins from plant samples.In this study,two important auxins were selected as model analytes,namely indole-3-butyric acid(IRA) and 1-naphthylacetic acid(NAA).They could be extracted and concentrated due to theirπ-πstacking interactions with MWCNT.Then HPLC-UV was introduced to detect IBA and NAA after sample pretreatment.Factors that may affect the enrichment efficiency were investigated and optimized.Comparative studies showed that MWCNT was superior to C18 for the extraction of the two analytes.Validation experiments showed that the optimized method had good linearity(0.9998 and 0.9960),high recovery(81.4%-85.4%),and low detection limits(0.0030 mg/L and 0.0012 mg/L).The results indicated that the novel method had advantages of convenience,good sensitivity,high efficiency, and it was feasible for the determination of auxins in plant samples.  相似文献   

12.
A separation system for gold nanoparticles was developed using monolithic silica capillary columns with 50 μm i.d., which were prepared via in-situ sol-gel processes. Gold nanoparticles with five different average sizes were synthesized via reduction of tetrachloroauric acid (HAuCl(4)) under different synthesis conditions, and were evaluated by UV-visible spectrophotometry, dynamic light scattering as well as transmission electron microscopy before they were separated using the developed system. The results showed that all of the gold nanoparticles had a certain size distribution, and the mean sizes obtained were 13, 17, 33, 43 and 61 nm, with σ = 2.5, 2.7, 5.2, 5.1 and 5.6 nm, respectively. Transmission electron microscopy showed that the samples with mean sizes of 13 and 17 nm were almost spherical, while larger samples were slightly non-uniform. The agglomeration of gold nanoparticles as the sample could be prevented by using a sodium dodecyl sulfate aqueous solution as the mobile phase, and gold nanoparticles were retained by adsorption on the silica surface. Separation with 8 mM sodium dodecyl sulfate as the eluent and a 1000-mm column was successful, and the separation of gold nanoparticles with 61 and 17 nm or 61 and 13 nm was demonstrated. The separation results obtained using a nonporous silica packed column as well as monolithic silica columns with or without mesopore growth were compared. It was found that separation using the mesopore-less monolithic column achieved better resolution. Through the use of a 2000-mm separation column, the mixtures of 61, 43, 17 nm and 61, 33, 13 nm could be separated.  相似文献   

13.
Simultaneous determination of indole-3-acetic acid and methyl indole-3-acetic acid ester in small amounts of plant tissue is essential for elucidating their mutual transformation mechanism and the in vivo function of methyl indole-3-acetic acid ester. Rapid quantification of flavonoids in the same sample is important for clarifying their roles in the transport of auxins and other phytohormones. Herein, we describe a simple method for the simultaneous determination of indole-3-acetic acid and its methyl ester in the roots of the Arabidopsis thaliana seedlings and a protocol for the rapid extraction and quantification of quercetin and kaempferol in these seedlings. High-performance liquid chromatography coupled with electrospray ionization time-of-flight tandem mass spectrometry was used for the detection of all the compounds. Negative data for indole-3-acetic acid and positive data for methyl indole-3-acetic acid ester were collected in two successive files with a single injection of the extracted sample. Under optimized conditions, the limit of detection for the four compounds was 2 ng/mL for indole-3-acetic acid, 0.5 ng/mL for methyl indole-3-acetic acid ester, 5 ng/mL for quercetin, and 1 ng/mL for kaempferol, respectively. Because of the high sensitivity of the assay, only 2-10 mg of the plant material was required to obtain quantitative results.  相似文献   

14.
建立了同时测定水稻中吲哚-3-丁酸(IBA)、吲哚-3-乙酸(IAA)及其7种氨基酸结合物的液相色谱-串联质谱( HPLC - MS/MS)检测方法.样品在4℃下于80%甲醇中浸提12 h后,经混合阴离子交换反相固相萃取(MAX)净化,以5 mmol/L的甲酸铵溶液和甲醇为流动相,在C18柱上进行液相色谱分离,电喷雾正...  相似文献   

15.
Chitosan microspheres were prepared by an emulsion crosslinking method using glutaraldehyde as the cross-linker. Two auxins were dissolved in ethyl benzoate and encapsulated into the microspheres. The best encapsulation efficiency for naphthalene-1-acetic acid and indole-3-acetic acid, respectively, are 68% and 56% and depends on the selection of the appropriate extent of crosslinker, crosslinking time, and the ratio of the oil/water phase. The microspheres were characterized by FTIR spectroscopy. Differential scanning calorimetry was applied to study the thermal stabilities, and scanning electron microscopy to investigate the morphology of the loaded microspheres. In-vitro release studies performed in buffered aqueous methanol at pH 7.4 indicated that the cumulative release rate of the auxins from the particles reaches a maximum (60%) after about 120?h. The release rate in water is higher than the one in methanol. Based on data for the correlation coefficient it is concluded that the drug release is controlled by a diffusion mechanism that follows a super Case-II transport scheme.
Figure
In this work, two auxins, e.g., naphthalene-1-acetic acid and indole-3-acetic acid, were encapsulated into chitosan microspheres by an emulsion crosslinking method. Furthermore, the encapsulation efficiency and the in-vitro release were discussed in detail indicating that the drug release was controlled by a diffusion mechanism that followed a super Case-II transport scheme  相似文献   

16.
In the current study attempts were made to investigate the effects of three different phases of callus induction followed by adventitious regeneration from leaf segments (central and lateral vein). Callus induction was observed in Murashige and Skoog’s (MS) medium supplemented with 15.0 μM 2,4-dichloro phenoxy acetic acid (2,4-D). Adventitious shoot buds formation was achieved on MS medium supplemented with 7.5 μM 2,4-D and 20.0 μM AdS in liquid medium as it induced 19.2?±?0.58 buds in central vein explants. Addition of different growth regulators (cytokinins—6-benzyladenine, kinetin and 2-isopentenyl adenine alone or in combination with auxins—indole-3-acetic acid, indole-3-butyric acid and α-naphthalene acetic acid, improved the shoot regeneration efficiency, in which 5.0 μM 6-benzyl adenine along with 0.25 μM α-naphthalene acetic acid was shown to be the most effective medium for maximum shoot regeneration (81.3 %) with 24.6 number of shoots and 4.4?±?0.08 cm shoot length per explant. Leaf culture of central veins led to better shoot formation capacity in comparison to lateral vein. Rooting was readily achieved on the differentiated shoots on 1/2 MS medium augmented with 20.0 μM indole-3-butyric acid. The plants were successfully hardened off in sterile soilrite followed by their establishment in garden soil with 80 % survival rate.  相似文献   

17.
A HPLC assay method for the quantitation of indole-3-acetic acid in vegetable extracts is described, using fluorescence detection. The method, which is based on extraction in the presence of poly(vinylpyrrolidone), preliminary cleanup of the extract using Sep Pak C18, and separation on a silica column, has been optimized for the determination of IAA in grape berries. The procedure described is determined to be accurate, sensitive, and reliable over time. The detection limit for IAA is about 0.1 ng.  相似文献   

18.
Zhang Y  Li Y  Hu Y  Li G  Chen Y 《Journal of chromatography. A》2010,1217(47):7337-7344
Auxin is a crucial phytohormone for precise control of growth and development of plants. Due to its low concentration in plant tissues which are rich in interfering substances, the accurate determination of auxins remains a challenge. In this paper, a new strategy for isolation and enrichment of auxins from plant tissues was obtained by the magnetic molecularly imprinted polymer (mag-MIP) beads, which were prepared by microwave heating initiated suspension polymerization using indole-3-acetic acid (IAA) as template. In order to obtain higher selective recognition cavities, an enhanced imprinting method based on binary functional monomers, 4-vinylpyridine (4-VP) and β-cyclodextrin (β-CD), was adopted for IAA imprinting. The morphological and magnetic characteristics of the mag-MIP beads were characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy and vibrating sample magnetometry. A majority of resultant beads were within the size range of 80-150μm. Porous surface morphology and good magnetic property were observed. Furthermore, the mag-MIP beads fabricated with 4-VP and β-CD as binary functional monomers exhibited improved recognition ability to IAA, as compared with the mag-MIP beads prepared with the individual monomer separately. Competitive rebinding experiment results revealed that the mag-MIP beads exhibited a higher specific recognition for the template than the non-imprinted polymer (mag-NIP) beads. An extraction method by mag-MIP beads coupled with high performance liquid chromatography (HPLC) was developed for determination of IAA and indole-3-butyric acid (IBA) in plant tissues. Linear ranges for IAA and IBA were in the range of 7.00-100.0μgL(-1) and 10.0-100.0μgL(-1), and the detection limits were 3.9 and 7.4μgL(-1), respectively. The analytical performance was also estimated by seedlings or immature embryos samples from three different plant tissues, pea, rice and wheat. Recoveries were in the range of 70.1-93.5%. The results show that the present imprinting method is a promising approach for preparation of selective adsorbents for sample preparation of auxin analysis in plant tissues.  相似文献   

19.
Gold nanoparticles have been widely applied in different fields of science over the last decade, e.g., in physicochemical separation methods. Two fused silica capillaries for capillary electrophoresis (CE) modified layer-by-layer with citrate-stabilized gold nanoparticles, 6,10-ionene, N-(3-sulfo,3-carboxy)-propionylchitosan (SCPC), and dextran sulfate (DS) were obtained and investigated. It has been found that the separation of the mixture of tetrahydrozoline, pindolol, terbutaline, nadolol, and hydroxyzine is fastest and most effective when the capillaries are modified with gold nanoparticles than with polysaccharide and polymers only. The most successful system for CE was obtained using DS as the polysaccharide. The enantiomers of tetrahydrozoline were separated using the capillaries modified with gold nanoparticles, 6,10-ionene, and dextran sulfate.  相似文献   

20.
In this study, diamino moiety functionalized silica nanoparticles with the size of 118 ± 12 nm were successfully synthesized and directly introduced into a chiral capillary electrophoresis system to improve the enantioseparation of 9‐fluorenyl methoxycarbonyl derivatized amino acids using norvancomycin as chiral selector. Under acidic background electrolyte conditions, functional silica nanoparticles can be readily adsorbed onto the inner surface of bare silica capillary column through electrostatic interaction to form a dynamic coating, resulting in a reversed anodic electro‐osmotic flow (i.e. from cathode to anode). As expected, chiral amino acid derivatives (usually negatively charged) can be rapidly separated under co‐electro‐osmotic flow conditions in the current separation system. Furthermore, the column performance and detection sensitivity for the enantioseparation were also obviously improved because the adsorption of chiral selector of norvancomycin to the capillary wall was greatly suppressed. Some important factors influencing the separation, such as the coating thickness, background electrolyte concentration, functional silica nanoparticles concentration, and the organic modifier were also investigated and the optimized separation conditions were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号