首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analytical study is presented for the magnetohydrodynamic (MHD) effects on a translating and rotating colloidal sphere in an arbitrary electrolyte solution prescribed with a general flow field and a uniform magnetic field at a steady state. The electric double layer surrounding the charged particle may have an arbitrary thickness relative to the particle radius. Through the use of a simple perturbation method, the Stokes equations modified with an electric force term, including the Lorentz force contribution, are dealt by using a generalized reciprocal theorem. Using the equilibrium double-layer potential distribution from solving the linearized Poisson-Boltzmann equation, we obtain closed-form formulas for the translational and angular velocities of the spherical particle induced by the MHD effects to the leading order. It is found that the MHD effects on the particle movement associated with the translation and rotation of the particle and the ambient fluid are monotonically increasing functions of κa, where κ is the Debye screening parameter and a is the particle radius. Any pure rotational Stokes flow of the electrolyte solution in the presence of the magnetic field exerts no MHD effect on the particle directly in the case of a very thick double layer (κa→0). The MHD effect caused by the pure straining flow of the electrolyte solution can drive the particle to rotate, but it makes no contribution to the translation of the particle.  相似文献   

2.
This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-microm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined frit-like structure that connects the pumping channel to side reservoirs, where platinum electrodes are located. Current densities up to 4000 A m(-2) could be obtained without noticeable Joule heating in the system. The pump performance was studied as a function of current density and magnetic field intensity, as well as buffer ionic strength and pH. Bead velocities of up to 1 mm s(-1) (0.5 microL min(-1)) were observed in buffered solutions using a 0.4 T NdFeB permanent magnet, at an applied current density of 4000 A m(-2). This pump is intended for transport of electrolyte solutions having a relatively high ionic strength (0.5-1 M) in a DC magnetic field environment. The application of this pump for the study of biological samples in a miniaturized total analysis system (microTAS) with integrated NMR detection is foreseen. In the 7 T NMR environment, a minimum 16-fold increase in volumetric flow rate for a given applied current density is expected.  相似文献   

3.
超导电磁船利用固定在船体上的超导磁铁在海水中形成强磁场,并在与此磁场相垂直的方向上通直流电电解海水。由于电磁相互作用,产生洛伦兹力,利用其反作用力,推动船前进。磁场对电解反应的影响,不仅与超导电磁船相关,而且是电化学领域中的一个基础研究课题。作者等在5T磁场下电解NaCl溶液时,观察到加磁场后Cl_2的发生量有减少的  相似文献   

4.
The evolution of hydrogen and oxygen gasses in a 0.36-M KOH electrolyte was observed in a magnetic field, and the void fraction was calculated by a hydrodynamic model. Both gasses evolving on a platinum working electrode formed a bubble layer which increased the ohmic resistance. In addition to natural convection, magnetohydrodynamic (MHD) convection in a magnetic field improved the electrolytic conductivity by supplying a fresh solution (pumping effect) and removing gas bubbles. The MHD convection reduced the void fraction of hydrogen gas more than that of oxygen, which can be explained by the poor wettability of the oxygen evolving electrode.  相似文献   

5.
The steady magnetohydrodynamic (MHD) flow of an incompressible viscous non-Newtonian power law fluid above an infinite rotating porous disk with heat transfer is studied. A uniform magnetic field is applied perpendicularly to the plane of the disk and a uniform injection or suction is applied through the surface of the disk. Numerical solutions of the nonlinear differential equations which govern the hydromagnetic and heat transfer are obtained. The effects of characteristics of the non-Newtonian fluid, the magnetic field parameter and the suction or injection velocity on the velocity and temperature distributions are considered.  相似文献   

6.
Inorganic mercury(II) ions are ubiquitous contaminants of world water systems and thus their determination and removal from the environment are important. The effects of magnetic field on the stripping analysis of mercury(II) ionic solutions have been experimentally investigated. During the stripping analysis, a potential difference is applied across the working and reference electrodes positioned in the working sample and a current density transmits through the electrolyte solution. When the electrochemical cell is exposed to a magnetic field, provided by a permanent magnet, the interaction between the current density and the magnetic field induces Lorentz forces, which, in turn, induce fluid motion. The induced magneto-hydrodynamic (MHD) convection enhances the ionic mass transport during the deposition and stripping steps, which leads to larger anodic current during the stripping step, thus obtaining higher detection sensitivity during the determination of the mercury(II) ions. The Hg2+ ionic solutions with concentrations ranging from 1 nM to 1 microM in the presence and absence of supporting electrolyte, 30 mM nitric acid (HNO 3) and 0.1 M potassium nitrate (KNO 3), under various magnetic flux densities (B=0,0.27,0.53, and 0.71 T) were measured with a linear sweep stripping voltammetry (LSSV) technique. The experimental results demonstrated that the stripping signals of the Hg2+ ions are enhanced, respectively, more than 10 and 30% in the absence and presence of the supporting electrolyte under a magnetic flux density B=0.71 T as compared to the cases in the absence of the magnetic field with all other identical conditions.  相似文献   

7.
Serebrennikova I  Lee S  White HS 《Faraday discussions》2002,(121):199-210; discussion 229-51
Spatial!y localized electrochemical activity at Al/Al2O3 electrodes has been investigated using scanning electrochemical microscopy (SECM) in order to establish the relationship between localized corrosion of Al (and Al alloys) with the defect structure of the native Al2O3 film. Local electron transfer at microscopic defects (2 to 50 microm radius) was visualized in acetonitrile solutions using the nitrobenzene/nitrobenzene radical anion (Eo approximately -1.6 V vs. Ag/Ag+) and tetracyanoquinodimethane/tetracyanoquinodimethane radical anion couples (Eo approximately -0.3 V) as redox mediators for imaging. SECM investigations revealed no significant differences in electrochemical activity at Al/AI203 electrodes in the two mediator solutions, indicating that electrical conduction at the defect sites is weakly dependent on interfacial potential and the electric field across the Al2O3 film. The density of electroactive defects observed by SECM varied by 2 to 3 orders of magnitude between electrodes prepared from the same source of Al (either 99.450% and 99.9995%) suggesting that electrical conduction in the native oxide is very sensitive to surface preparation. Defect densities as low as approximately 3 sites cm(-2) were readily measured by SECM.  相似文献   

8.
Uneven lithium (Li) electrodeposition hinders the wide application of high-energy-density Li metal batteries (LMBs). Current efforts mainly focus on the side-reaction suppression between Li and electrolyte, neglecting the determinant factor of mass transport in affecting Li deposition. Herein, guided Li+ mass transport under the action of a local electric field near magnetic nanoparticles or structures at the Li metal interface, known as the magnetohydrodynamic (MHD) effect, are proposed to promote uniform Li deposition. The modified Li+ trajectories are revealed by COMSOL Multiphysics simulations, and verified by the compact and disc-like Li depositions on a model Fe3O4 substrate. Furthermore, a patterned mesh with the magnetic Fe−Cr2O3 core-shell skeleton is used as a facile and efficient protective structure for Li metal anodes, enabling Li metal batteries to achieve a Coulombic efficiency of 99.5 % over 300 cycles at a high cathode loading of 5.0 mAh cm−2. The Li protection strategy based on the MHD interface design might open a new opportunity to develop high-energy-density LMBs.  相似文献   

9.
The redox behavior of ferrocene alkane thiol self assembled monolayer modified electrodes in contact with aqueous perchlorate solutions both in the absence of and in the presence of an external magnetic field is examined using both electrochemical and gravimetric techniques The redox switching process involves an ET reaction involving the ferrocene/ferricinium redox transition coupled with an ion pairing step involving perchlorate ion. The voltammetric response recorded in the latter medium is irreversibly affected by the imposition of a static magnetic field of magnitude 0.5 T applied in a direction parallel to the electrode surface. The magnetic field dependence of the redox behavior is attributed to structural changes in the monolayer arising from double layer effects involving changes in the spatial distribution of perchlorate counterions at the monolayer/solution interface, brought about by local convective stirring arising from the B field generated magnetohydrodynamic Lorenz body force.  相似文献   

10.
The magnetohydrodynamic (MHD) effects on the translation and rotation of a charged colloidal sphere situated at the center of a spherical cavity filled with an arbitrary electrolyte solution when a constant magnetic field is imposed are analyzed at the quasisteady state. The electric double layers adjacent to the solid surfaces may have an arbitrary thickness relative to the particle and cavity radii. Through the use of a perturbation method to the leading order, the Stokes equations modified with the electric∕Lorentz force term are dealt by using a generalized reciprocal theorem. Using the equilibrium double-layer potential distribution in the fluid phase from solving the linearized Poisson-Boltzmann equation, we obtain explicit formulas for the translational and angular velocities of the colloidal sphere produced by the MHD effects valid for all values of the particle-to-cavity size ratio. For the limiting case of an infinitely large cavity with an uncharged wall, our result reduces to the relevant solution for an unbounded spherical particle available in the literature. The boundary effect on the MHD motion of the spherical particle is a qualitatively and quantitatively sensible function of the parameters a∕b and κa, where a and b are the radii of the particle and cavity, respectively, and κ is the reciprocal of the Debye screening length. In general, the proximity of the cavity wall reduces the MHD migration but intensifies the MHD rotation of the particle.  相似文献   

11.
The iron(II) complex LFeCl 2Li(THF) 2 (L = beta-diketiminate), 1, has been studied with variable-temperature, variable-field Mossbauer spectroscopy and parallel mode electron paramagnetic resonance (EPR) spectroscopy in both solution and the solid state. In zero applied field the 4.2 K Mossbauer spectrum exhibits an isomer shift delta = 0.90 mm/s and quadrupole splitting Delta E Q = 2.4 mm/s, values that are typical for the high-spin ( S = 2) state anticipated for the iron in 1. Spectra recorded in applied magnetic fields yield an anisotropic magnetic hyperfine tensor with A x = +2.3 (+ 1.0) T, A y = A z = -21.5 T ( solution) and a nearly axial zero-field splitting of the spin quintet with D = D x approximately -14 cm (-1) and rhombicity E/ D approximately 0.1. The small, positive value for A x results from the presence of residual orbital angular momentum along x. The EPR analysis gives g x approximately 2.4 (and g y approximately g z approximately 2.0) and reveals a split " M S = +/- 2" ground doublet with a gap distributed around Delta = 0.42 cm (-1). The Mossbauer spectra of 1 show unusual features that arise from the presence of orientation-dependent relaxation and a distribution in the magnetic hyperfine field along x. The origin of the distribution has been analyzed using crystal field theory. The analysis indicates that the distribution in the magnetic hyperfine field originates from a narrow distribution, sigma phi approximately 0.5 degrees , in torsion angle phi between the FeN 2 and FeCl 2 planes, arising from minute inhomogeneities in the molecular environments.  相似文献   

12.
Cyclic voltammetry with Nd-Fe-B disk magnet electrodes (3.2 mm diameter) at slow sweep rates (< or = 0.01 V s(-1)) in relatively concentrated solutions (e.g., 80 mM) of diamagnetic redox-active species (e.g., TMPD) is controlled by diffusion. Under similar conditions, cyclic voltammetry with conventional noble metal disk millielectrodes is characterized by the absence of diffusion waves and the presence of density gradient driven natural convection. Although the magnetic field in the vicinity of Nd-Fe-B electrodes is relatively strong (approximately 0.5 T at the surface of the magnet electrode), the absence of magnetohydrodynamic stirring effects is attributed to the fact that the i and B vectors are almost parallel, and therefore the magnetohydrodynamic force F(B) (=i x B) is very small. On the other hand, the absence of natural convection is attributed to the two possible paramagnetic body forces, F(inverted Delta B) and F(inverted Delta C), exerted by the magnet electrode on the diffusion layer. Of those two forces, the former depends on field gradients (F(inverted Delta B) approximately B x inverted Delta B), while the latter depends on concentration gradients (F(inverted Delta C) approximately inverted Delta C(j)) and is directed toward areas with higher concentration of paramagnetic j. Through thorough analysis of the magnetic field and its gradients, it is found that the average F(inverted Delta C) force acting upon the entire diffusion layer is approximately 1.75 times stronger than F(inverted Delta B). Nevertheless, it is calculated that either force independently is strong enough and would have been able to hold the diffusion layer by itself. Further evidence suggests that, integrated over the entire solution, F(inverted Delta B) is the dominant paramagnetic force when the redox-active species is paramagnetic, e.g., [Co(bipy)(3)](ClO(4))(2) (bipy = 2,2'-bipyridine). Finally, convective behavior with diamagnetic redox-active species and magnet millielectrodes can be observed by holding closely (2-3 mm away) a repelling second magnet that bends the induction B to the point that the i x B product is not equal to 0. with Nd-Fe-B disk ma  相似文献   

13.
The effect of a constant magnetic field on bioelectrocatalytic transformations of three different enzyme assemblies linked to electrodes is examined and correlated with a theoretical magnetohydrodynamic model. The systems consist of surface-reconstituted glucose oxidase (GOx), an integrated lactate dehydrogenase/nicotinamide/pyrroloquinoline quinone assembly (LDH/NAD+ -PQQ), and a cytochrome c/cytochrome oxidase system (Cyt c/COx) linked to the electrodes. Pronounced effects of a constant magnetic field applied parallel to the electrode surface are observed for the bioelectrocatalyzed oxidation of glucose and lactate by the GOx-electrode and LDH/NAD+ -PQQ-electrode, respectively. The enhancement of the bioelectrocatalytic processes correlates nicely with the magnetohydrodynamic model, and the limiting current densities (iL) relate to B1/3 (B = magnetic flux density) and to C4/3 (C* = bulk concentration of the substrate). A small magnetic field effect is observed for the Cyt c/COx-electrode, and its origin is still questionable. The effect of the constant magnetic field on the performance of biofuel cells with different configurations is examined. For the biofuel cell consisting of LDH/NAD+ -PQQ anode and Cyt c/COx cathode, a 3-fold increase in the power output was observed at an applied magnetic field of B = 0.92 T and external load of 1.2 kOhms.  相似文献   

14.
聚苯胺对抗坏血酸的电催化氧化及磁效应   总被引:2,自引:0,他引:2  
磁场对生物体系及其中物理现象和化学反应的影响历来是人们关注的焦点[1].磁场能影响分子、细胞、组织、器官乃至整个生物体系的新陈代谢功能.磁场对化学反应的影响通常是通过对自由基(对)施加作用而体现的,磁场改变了未成对电子的自旋方式,从而改变了反应的墙,进而改变化学反应的速率[2].此外,磁场对电化学体系的影响也有报导[3],外加磁场激发溶液流动,产生磁流体动力学效应(MHD)[4],增大传质速度,影响电化学进程.本文研究聚苯胺(PAN)修饰电极上抗坏血酸(AA)的电催化氧化,并讨论了膜厚、溶液pH值、AA浓度(CAA…  相似文献   

15.
This paper concerns with the analysis of double stratification in magnetohydrodynamic (MHD) flow of nanofluid by a stretching cylinder. Brownian motion and thermophoresis effects are present in the transport equations. The flow is subjected to velocity, thermal and solutal slip conditions. Non-linear ordinary differential equations are obtained from the governing non-linear partial differential equations after using appropriate transformations. The resulting non-linear ordinary differential equations are solved for the convergent series solutions. The velocity, temperature and concentration profiles are illustrated for different emerging parameters. Velocity distribution decays for higher estimation of velocity slip parameter. Furthermore, temperature decreases and concentration enhances for higher values of thermal stratification parameter and thermophoresis parameter, respectively. Numerical results for the skin friction, Nusselt number and Sherwood number are also presented and examined. Comparison between the published limiting solutions and present results is found in an excellent agreement.  相似文献   

16.
Journal of Thermal Analysis and Calorimetry - This study shows multiple solutions, heat transfer characteristics, and stability analysis of the magnetohydrodynamic (MHD) flow of hybrid nanofluid...  相似文献   

17.
AC electroosmotic (ACEO) flow above the gap between coplanar electrodes is mapped by the measurement of Stokes forces on an optically trapped polystyrene colloidal particle. E2‐dependent forces on the probe particle are selected by amplitude modulation (AM) of the ACEO electric field (E) and lock‐in detection at twice the AM frequency. E2‐dependent DEP of the probe is eliminated by driving the ACEO at the probe's DEP crossover frequency. The location‐independent DEP crossover frequency is determined, in a separate experiment, as the limiting frequency of zero horizontal force as the probe is moved toward the midpoint between the electrodes. The ACEO velocity field, uncoupled from probe DEP effects, was mapped in the region 1–9 μm above a 28 μm gap between the electrodes. By use of variously sized probes, each at its DEP crossover frequency, the frequency dependence of the ACEO flow was determined at a point 3 μm above the electrode gap and 4 μm from an electrode tip. At this location the ACEO flow was maximal at ~117 kHz for a low salt solution. This optical trapping method, by eliminating DEP forces on the probe, provides unambiguous mapping of the ACEO velocity field.  相似文献   

18.
Journal of Thermal Analysis and Calorimetry - This paper studies an unsteady magnetohydrodynamic (MHD) Maxwell fluid flow on a rotating as well as a vertically moving disk in the presence of...  相似文献   

19.
The use of redox magnetohydrodynamics (MHD) to enhance the anodic stripping voltammetry (ASV) response of heavy metals has been investigated, with respect to achieving portability: disposable electrodes consisting of screen-printed carbon (SPC) on a low temperature co-fired ceramic (LTCC) substrate, small volumes, and permanent magnets. The analytes tested (Cd(2+), Cu(2+), and Pb(2+)) were codeposited on SPC with Hg(2+) to form a Hg thin film electrode. High concentrations of Fe(3+) were used to produce a high cathodic current which generates a significant Lorentz force in the presence of a magnetic field. This Lorentz force induces solution convection during the deposition step, enhancing the mass transport of analytes to the electrode and increasing their preconcentrated quantity in the mercury thin film. Therefore, larger ASV peaks and improved sensitivities are obtained, compared to analyses performed without a magnet. The effects on ASV signal of varying Hg(2+) concentration (0.10 and 1.0 mM), deposition time (10-600 s), and electrode surface roughness were investigated. In addition, analyses were performed using a real lake water matrix. By using the disposable LTCC-SPC working electrodes in small volumes (150 microL) and with small permanent magnets (0.78 T), peak areas were increased by 75% when compared to the signal obtained in the absence of a magnetic field. A limit of detection of 25 nM for Cd(2+) was observed with only a 1 min preconcentration time.  相似文献   

20.
The performance of a capillary magnetophoretic device was improved by enhancing the magnetic field gradient using a pair of small iron tips attached to the Nd-Fe-B magnets. The magnetophoretic intensity, B(dB/dx), was determined as a function of distance along the gap between the tips from the magnetophoretic velocity of a 3 microm polystyrene microparticle in 0.6 M manganese(II) chloride solution. The maximum intensity was increased 4.5 times by the attached iron pieces. The magnetophoresis of a single human blood cell in 0.1 M manganese(II) solution was studied by this method and its magnetic susceptibility was estimated. Magnetophoretic trapping of red blood cells was demonstrated under counter-current flow conditions in the capillary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号