首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Si面4H-SiC衬底上外延石墨烯近平衡态制备   总被引:1,自引:0,他引:1       下载免费PDF全文
蔚翠  李佳  刘庆彬  蔡树军  冯志红 《物理学报》2014,63(3):38102-038102
SiC热解法是制备大面积、高质量石墨烯的理想选择之一.外延石墨烯的晶体质量仍是制约其应用的关键因素之一.本文通过SiC热解法在4H-SiC(0001)衬底上制备单层外延石墨烯.通过引入氩气惰性气氛和硅蒸气,使SiC衬底表面的Si原子升华与返回概率接近平衡,外延石墨烯生长速率大大减慢,单层石墨烯的生长时间从15 min延长至75 min.测试分析表明,生长速率减慢,外延石墨烯中缺陷减少,晶体质量提高,使得外延石墨烯的电性能都得到改善,单层外延石墨烯的最高载流子迁移率达到1200 cm2/V·s,方阻604?/.以上结果表明,控制生长气氛,减慢生长速率是实现高质量外延石墨烯的可行途径之一.  相似文献   

2.
In this report we investigate structural and electrical properties of epitaxial Chemical Vapor Deposition quasi-free-standing graphene on an unintentionally-doped homoepitaxial layer grown on a conducting 4H–SiC substrate 4° off-axis from the basal [0001] direction towards [11-20]. Due to high density of SiC vicinal surfaces the deposited graphene is densely stepped and gains unique characteristics. Its morphology is studied with atomic force and scanning electron microscopy. Its few-layer character and p-type conductance are deduced from a Raman map and its layers structure determined from a high-resolution X-ray diffraction pattern. Transport properties of the graphene are estimated through Hall effect measurements between 100 and 350 K. The results reveal an unusually low sheet resistance below 100 Ω/sq and high hole concentration of the order of 1015 cm−2. We find that the material's electrical properties resemble those of an epitaxially-grown SiC PIN diode, making it an attractive platform for the semiconductor devices technology.  相似文献   

3.
Using novel ideas for the fabrication of epitaxial graphene(EG)on SiC,two forms of graphene termed as vertical aligned graphene sheets(VAGS)and graphene covered SiC powder(GCSP)were derived,respectively,from SiC slices and SiC powder,aimed for applications in energy storage and photocatalysis.Herein,the fabrication procedures,morphology characteristics,some intrinsic physical properties and performances for applications in field effect transistor(FET)and cold cathode field emission source are revealed and analyzed based on the graphene materials.The EG on a 2-inch SiC(0001)showed an average sheet resistance about 720/with a non-uniformity 7.2%.The FETs fabricated on the EG possessed a cutoff frequency 80GHz.Based on the VAGS derived from a completely carbonized SiC slice,a magnetic phase diagram of graphene with irregular zigzag edges is also reported.  相似文献   

4.
李佳  王丽  冯志红  蔚翠  刘庆彬  敦少博  蔡树军 《中国物理 B》2012,21(9):97304-097304
Graphene with different surface morphologies were fabricated on 8° -off-axis and on-axis 4H-SiC(0001) substrates by high-temperature thermal decompositions. Graphene grown on Si-terminated 8° -off-axis 4H-SiC(0001) shows lower Hall mobility than the counterpart of on-axis SiC substrates. The terrace width is not responsible for the different electron mobility of graphene grown on different substrates, as the terrace width is much larger than the mean free path of the electrons. The electron mobility of graphene remains unchanged with an increasing terrace width on Siterminated on-axis SiC. Interface scattering and short-range scattering are the main factors affecting the mobility of epitaxial graphene. After the optimization of the growth process, the Hall mobility of the graphene reaches 1770 cm 2 /V·s at a carrier density of 9.8.×10 12 cm 2 . Wafer-size graphene was successfully achieved with an excellent double-layer thickness uniformity of 89.7% on a 3-inch SiC substrate.  相似文献   

5.
In this paper,high temperature direct current(DC) performance of bilayer epitaxial graphene device on SiC substrate is studied in a temperature range from 25℃ to 200℃.At a gate voltage of-8 V(far from Dirac point),the drainsource current decreases obviously with increasing temperature,but it has little change at a gate bias of +8 V(near Dirac point).The competing interactions between scattering and thermal activation are responsible for the different reduction tendencies.Four different kinds of scatterings are taken into account to qualitatively analyze the carrier mobility under different temperatures.The devices exhibit almost unchanged DC performances after high temperature measurements at 200℃ for 5 hours in air ambience,demonstrating the high thermal stabilities of the bilayer epitaxial graphene devices.  相似文献   

6.
We report new Raman features of epitaxial graphene (EG) on Si-face 4H-SiC prepared by pulsed electron irradiation (PEI). With increasing graphene layers, frequencies of G and 2D peaks show blue-shifts and approach those of bulk highly-oriented pyrolytic graphite. It is indicated that the EG is slightly tension strained and tends to be strain-free. Meanwhile, single Lorentzian line shapes are well fitted to the 2D peaks of EG on SiC(O001) and their full widths at half maximum decrease with the increasing graphene layers, which indicates that the multilayer EG on Si-face can also contain turbostratic stacking by our PEI route instead of only AB Bernal stacking by a traditional thermal annealing method. It is worth noting that the stacking style plays an important role on the charge carrier mobility. Therefore our findings will be a candidate for growing quality graphene with high carrier mobility both on the Si- and C-terminated SiC substrate. Mechanisms behind the features are studied and discussed.  相似文献   

7.
Monolayer and bilayer graphenes have generated tremendous excitement as the potentially useful electronic materials due to their unique features.We report on monolayer and bilayer epitaxial graphene field-effect transistors(GFETs)fabricated on SiC substrates.Compared with monolayer GFETs,the bilayer GFETs exhibit a significant improvement in dc characteristics,including increasing current density Ids,improved transconductance g_m,reduced sheet resistance R_(on),and current saturation.The improved electrical properties and tunable bandgap in the bilayer graphene lead to the excellent dc performance of the bilayer GFETs.Furthermore,the improved dc characteristics enhance a better rf performance for bilayer graphene devices,demonstrating that the quasifree-standing bilayer graphene on SiC substrates has a great application potential for the future graphene-based electronics.  相似文献   

8.
We have extensively studied the electronic properties of epitaxial graphene grown on the Si face of a 6H silicon carbide substrate by thermal decomposition in an argon atmosphere. Using e-beam lithography, large van der Pauw structures as well as Hall bars were patterned. Their size ranged from millimeters down to submicrometer-sized Hall bars, the latter entirely placed on atomically flat substrate terraces. We found reproducible electronic properties, independent of the sample size and orientation, over a broad temperature range. A comparison of the mobility values indicated no enhanced scattering at the macroscopic step edges of the SiC substrate and due to adsorbed molecules. However, the strong coupling to the substrate results in an elevated charge carrier density n and a reduced mobility μ compared to exfoliated graphene. If n is decreased the mobility rises substantially (up to 29 000 cm2/V s at 25 K), and Shubnikov-de Haas oscillations and the graphene-like quantum Hall effect become visible. This leads to the conclusion that the electrons in epitaxial graphene have the same quasi-relativistic properties previously shown in exfoliated graphene and expected from theory.  相似文献   

9.
We fabricated high-mobility field-effect transistors based on epitaxial graphene synthesized by vacuum graphitization of both the Si- and C-faces of SiC. Room-temperature field-effect mobilities >4000 cm2/V s for both electrons and holes were achieved, although with wide distributions. By using a high-k gate dielectric, we were able to measure the transistor characteristics in a wide carrier density range, where the mobility is seen to decrease as the carrier density increases. We formulate a simple semiclassical model of electrical transport in graphene, and explain the sublinear dependence of conductivity on carrier density from the view point of the few-layer graphene energy band structure. Our analysis reveals important differences between the few-layer graphene energy dispersions on the SiC Si- and C-faces, providing the first evidence based on electrical device characteristics for the theoretically proposed energy dispersion difference between graphene synthesized on these two faces of SiC.  相似文献   

10.
The electrical properties of graphene depend sensitively on the substrate. For example, recent measurements of epitaxial graphene on SiC show resistance arising from steps on the substrate. Here we calculate the deformation of graphene at substrate steps, and the resulting electrical resistance, over a wide range of step heights. The elastic deformations contribute only a very small resistance at the step. However, for graphene on SiC(0001) there is strong substrate-induced doping, and this is substantially reduced on the lower side of the step where graphene pulls away from the substrate. The resulting resistance explains the experimental measurements.  相似文献   

11.
We show experimentally that multilayer graphene grown on the carbon terminated SiC(0001[over ]) surface contains rotational stacking faults related to the epitaxial condition at the graphene-SiC interface. Via first-principles calculation, we demonstrate that such faults produce an electronic structure indistinguishable from an isolated single graphene sheet in the vicinity of the Dirac point. This explains prior experimental results that showed single-layer electronic properties, even for epitaxial graphene films tens of layers thick.  相似文献   

12.
In this paper, we have used low temperature scanning tunneling microscopy and spectroscopy (LT-STM/STS) to study zigzag or armchair edges of epitaxial graphene on 6H-SiC (0001). The monolayer carbon structures exhibit occasionally one-dimensional ridge (1D) in close vicinity to step edge. This ridge exhibits different edges orientations in armchair–zigzag transition which give rise to different local density of states (LDOS) along this 1D structure. This ridge formation is likely explained by residual compressive in-plane stresses.  相似文献   

13.
We investigated the thermodynamic parameters (chemical potential, heat capacity and thermodynamic potential) and a thermoelectric transport in an epitaxial graphene on the size-quantized metal and semiconductor films within the framework of simple analytical model. We considered limiting cases of high and low temperatures. We showed that the chemical potential of epitaxial graphene is smaller than the chemical potential of isolated graphene at the same carrier concentration. Conversely, the heat capacity of the epitaxial graphene is greater than the heat capacity of the isolated graphene. We investigated a conductivity and thermopower of the epitaxial graphene. We showed that in such system there are the kinks of conductivity and peaks of thermoelectric power. These peaks are several times greater than those of isolated graphene. We compared our system with cases of 2D and 3D substrates.  相似文献   

14.
Hall effect measurements of a graphene-on-SiC system were carried out as a function of temperature (1.8–200 K) at a static magnetic field (0.5 T). With the analysis of temperature dependent single-field Hall data with the Simple Parallel Conduction Extraction Method (SPCEM), bulk and two-dimensional (2D) carrier densities and mobilities were extracted successfully. Bulk carrier is attributed to SiC substrate and 2D carrier is attributed to the graphene layer. For each SPCEM extracted carrier data, relevant three-dimensional or 2D scattering analyses were performed. Each SPCEM extracted carrier data were explained with the related scattering analyses. A temperature independent mobility component, which may related to an interaction between graphene and SiC, was observed for both scattering analyses with the same mobility limiting value. With the SPCEM, effective ionized impurity concentration of SiC substrate, extracted 2D-mobility, and sheet carrier density of the graphene layer are calculated with using temperature dependent static magnetic field Hall data.  相似文献   

15.
Abstract

The recent progress using Raman spectroscopy and imaging of graphene is reviewed. The intensity of the G band increases with increased graphene layers, and the shape of 2D band evolves into four peaks of bilayer graphene from a single peak of monolayer graphene. The G band will blue shift and become narrow with both electron and hole doping, whereas the 2D band will blue shift with hole doping and red shift with electron doping. Frequencies of the G and 2D band will downshift with increasing temperature. Under compressed strain, the upshift of the G and 2D bands can be found. Moreover, the strong Raman signal of monolayer graphene is explained by interference enhancement effect. As for epitaxial graphene, Raman spectroscopy can be used to identify the superior and inferior carrier mobility. The edge chirality of graphene can be determined by using polarized Raman spectroscopy. All results mentioned here are closely relevant to the basic theory of graphene and application in nanodevices.  相似文献   

16.
The thermoelectric power of a material, typically governed by its band structure and carrier density, can be varied by chemical doping that is often restricted by solubility of the dopant. Materials showing large thermoelectric power are useful for many industrial applications, such as the heat-to-electricity conversion and the thermoelectric cooling device. Here we show a full electric-field tuning of thermoelectric power in a dual-gated bilayer graphene device resulting from the opening of a band gap by applying a perpendicular electric field on bilayer graphene. We uncover a large enhancement in thermoelectric power at a low temperature, which may open up a new possibility in low temperature thermoelectric application using graphene-based device.  相似文献   

17.
In this paper, we report a feasible route of growing epitaxial graphene on 4H-SiC (0001) substrate in a low pressure of 4 mbar (1 bar=105 Pa) with an argon flux of 2 standard liters per minute at 1200, 1300, 1400, and 1500 ℃ in a commercial chemical vapour deposition SiC reactor. Using Raman spectroscopy and scanning electron microscopy, we confirm that epitaxial graphene evidently forms on SiC surface above 1300 ℃ with a size of several microns. By fitting the 2D band of Raman data with two-Lorentzian function, and comparing with the published reports, we conclude that epitaxial graphene grown at 1300 ℃ is four-layer graphene.  相似文献   

18.
《Current Applied Physics》2020,20(12):1435-1440
Freestanding graphene on a trench has been fabricated extensively using a transfer process of chemical vapor deposition grown graphene. Here, we demonstrate that freestanding graphene can be grown directly on a trench without a transfer process. A shallow trench was made on a 6H–SiC(0001) wafer using a focused ion beam lithography. The shallow trench was heated to a high temperature under Ar atmosphere. The heat treatment made the shallow trench become deeper and wider. Subsequently, epitaxial graphene was floating on the trench, resulting in freestanding graphene, where underlying bulk SiC was self-etched after the growth of epitaxial graphene. The freestanding graphene on a trench was characterized using Raman spectroscopy and atomic force microscopy. Such freestanding graphene writing can be applied to semiconductor fabrication process of freestanding graphene devices without a transfer process.  相似文献   

19.
Scanning tunneling microscopy shows that a layer of graphene can be grown on the hex-reconstructed Pt(100) surface and that the reconstruction is preserved after growth. A continuous sheet of graphene can be grown across domain boundaries and step edges without loss of periodicity or change in direction. Density functional theory calculations on a simple model system support the observation that the graphene can have different rotation angles relative to the hex-reconstructed Pt surface. The graphene sheet direction can be changed by incorporating pentagon-heptagon defects giving rise to accommodation of edge dislocations. The defect formation energy and the induced buckling of the graphene have been characterized by DFT calculations.  相似文献   

20.
张婷婷  成蒙  杨蓉  张广宇 《物理学报》2017,66(21):216103-216103
具有特定边界的石墨烯纳米结构在纳电子学、自旋电子学等研究领域表现出良好的应用前景.然而石墨烯加工成纳米结构时,无序的边界不可避免地会降低其载流子迁移率.氢等离子体各向异性刻蚀技术是加工具备完美边界石墨烯微纳结构的一项关键技术,刻蚀后的石墨烯呈现出规则的近原子级平整的锯齿形边界.本文研究了氮化硼上锯齿形边界石墨烯反点网络的磁输运性质,低磁场下可以观测到载流子围绕着一个空位缺陷运动时的公度振荡磁阻峰.随着磁场的增大,朗道能级简并度逐渐增大,载流子的磁输运行为从Shubnikov-de Haas振荡逐渐向量子霍尔效应转变.在零磁场附近可以观测到反点网络周期性空位缺陷的边界散射所导致的弱局域效应.研究结果表明,在氮化硼衬底上利用氢等离子体刻蚀技术加工锯齿形边界石墨烯反点网络,其样品质量会明显提高,这种简单易行的方法为后续高质量石墨烯反点网络的输运研究提供了新思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号