首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Despite the huge progress of luminescent molecular assemblies over the past decade, it is still challenging to understand their confined behavior in semi-crystalline polymers for constrained space recognition. Here, we report a polymorphic luminogen with aggregation-induced emission (AIE), capable of selective growth in polymer amorphous and crystalline phases with distinct color. The polymorphic behaviors of the AIE luminogen embedded within the polymer network are dependent on the size of nano-confinement: a thermodynamically stable polymorph of the AIE luminogen with green emission is stabilized in the amorphous phase, while a metastable polymorph with yellow emission is confined in the crystalline phase. The information on polymer crystalline and amorphous phases is transformed into distinct fluorescence colors, allowing a single AIE luminogen as a fluorescent marker for visualization of polymer microstructures in terms of amorphous and crystalline phase distribution, quantitative polymer crystallinity measurement, and spatial morphological arrangement. Our findings demonstrate that confinement of the AIE luminogen in the polymer network can achieve free space recognition and also provide a correlation between microscopic morphologies and macroscopic optical signals. We envision that our strategy will inspire the development of other materials with spatial confinement to incorporate AIE luminogens for various applications.

A polymorphic AIEgen is capable of selective growth in amorphous and crystalline polymer phases with distinct color for microstructure visualization.  相似文献   

2.
A novel tetraphenylethene derivative with a rhodamine unit was successfully synthesized via high-efficiency Suzuki coupling reaction. The highly solid-state emissive target fluorescent molecule exhibited significative aggregation-induced emission enhancement (AIEE) feature. Furthermore, the luminogen showed reversible mechanochromic luminescence behavior involving color change from orange to red. In addition, the powder X-ray diffraction (XRD) test results verified that the mechanofluorochromic phenomenon of luminogen 1 was attributed to a morphological transformation between the crystalline and amorphous states.  相似文献   

3.
《Tetrahedron》2019,75(36):130489
An aggregation-induced emission (AIE)-active fluorescent chemosensor based on a tetraphenylethene (TPE) unit has been successfully designed and synthesized. Interestingly, the luminogen could detect Zn2+ selectively in a THF solution with the detection limit of 1.24 × 10−6 mol L−1. Meanwhile, the luminogen could also detect Hg2+ selectively in a THF-water mixture with the water content of 90%, and the detection limit was 2.55 × 10−9 mol L−1. Furthermore, the solid-state mechanochromic fluorescence behavior of the luminogen was investigated systematically. Indeed, the AIE-active luminogen also exhibited reversible mechanofluorochromic phenomenon involving fluorescent color change from blue to green, and powder X-ray diffraction results indicated that the switchable morphology conversion between crystalline and amorphous states was responsible for this mechanochromism phenomenon.  相似文献   

4.
Developing luminescent probes with long lifetime and high emission efficiency is essential for time-resolved imaging. However, the practical applications usually suffer from emission quenching of traditional luminogens in aggregated states, or from weak emission of aggregation-induced emission type luminogens in monomeric states. Herein, we overcome this dilemma by a rigid-and-flexible alternation design in donor–acceptor–donor skeletons, to achieve a thermally activated delayed fluorescence luminogen with high emission efficiency both in the monomeric state (quantum yield up to 35.3 %) and in the aggregated state (quantum yield up to 30.8 %). Such a dual-phase strong and long-lived emission allows a time-resolved luminescence imaging, with an efficiency independent of probe pretreatment and probe concentration. The findings open opportunities for developing luminescent probes with a usage in larger temporal and spatial scales.  相似文献   

5.
Developing luminescent probes with long lifetime and high emission efficiency is essential for time‐resolved imaging. However, the practical applications usually suffer from emission quenching of traditional luminogens in aggregated states, or from weak emission of aggregation‐induced emission type luminogens in monomeric states. Herein, we overcome this dilemma by a rigid‐and‐flexible alternation design in donor–acceptor–donor skeletons, to achieve a thermally activated delayed fluorescence luminogen with high emission efficiency both in the monomeric state (quantum yield up to 35.3 %) and in the aggregated state (quantum yield up to 30.8 %). Such a dual‐phase strong and long‐lived emission allows a time‐resolved luminescence imaging, with an efficiency independent of probe pretreatment and probe concentration. The findings open opportunities for developing luminescent probes with a usage in larger temporal and spatial scales.  相似文献   

6.
Aggregation‐induced emission (AIE) is a photoluminescence phenomenon in which an AIE luminogen (AIEgen) exhibits intense emission in the aggregated or solid state but only weak or no emission in the solution state. Understanding the mechanism of AIE requires consideration of excited state molecular geometry (for example, a π twist). This Minireview examines the history of AIEgens with a focus on the representative AIEgen, tetraphenylethylene (TPE). The mechanisms of solution‐state quenching are reviewed and the crucial role of excited‐state molecular transformations for AIE is discussed. Finally, recent progress in understanding the relationship between excited state molecular transformations and AIE is overviewed for a range of different AIEgens.  相似文献   

7.
Three tetraphenylethene-based compounds with different substituents were successfully synthesized. All these fluorescent molecules exhibited typical aggregation-induced emission (AIE) effect. In addition, these luminogens showed various mechanochromic luminescence phenomena. Moreover, the mechanofluorochromic behavior of luminogen 1 was self-reversible.  相似文献   

8.
Molecular dimers have been frequently found to play an important role in room temperature phosphorescence (RTP), but its inherent working mechanism has remained unclear. Herein a series of unique characteristics, including singlet excimer emission and thermally activated delayed fluorescence, were successfully integrated into a new RTP luminogen of CS-2COOCH3 to clearly reveal the excited-state process of RTP and the special role of molecular dimers in persistent RTP emission.

The first purely organic room temperature phosphorescence (RTP) luminogen, with singlet excimer emission and thermally activated delayed fluorescence (TADF) effect, was successfully developed.   相似文献   

9.
Ionic fluorophores are powerful tools for the study of environmental science and bio‐imaging. However, traditional ionic dyes usually require long synthetic steps and suffer from a quenching effect caused by aggregation. A water‐soluble ionic aggregation‐induced emission luminogen called DBTA is presented, which is readily accessed by a one‐step reaction. The switchable emission manipulated by hydrogen bonding provided solid evidence for the restriction of intramolecular motions as the mechanism of aggregation‐induced emission. DBTA can not only differentiate solvents with different H‐bond donor acidities but also capable of wash‐free imaging in living HeLa cells and fish larva.  相似文献   

10.
Functional materials with multi-responsive properties and good controllability are highly desired for developing bioinspired and intelligent multifunctional systems. Although some chromic molecules have been developed, it is still challenging to realize in situ multicolor fluorescence changes based on a single luminogen. Herein, we reported an aggregation-induced emission (AIE) luminogen called CPVCM, which can undergo a specific amination with primary amines to trigger luminescence change and photoarrangement under UV irradiation at the same active site. Detailed mechanistic insights were carried out to illustrate the reactivity and reaction pathways. Accordingly, multiple-colored images, a quick response code with dynamic colors, and an all-round information encryption system were demonstrated to show the properties of multiple controls and responses. It is believed that this work not only provides a strategy to develop multiresponsive luminogens but also develops an information encryption system based on luminescent materials.  相似文献   

11.
Tracking mitochondrial movement in neurons is an attractive but challenging research field as dysregulation of mitochondrial motion is associated with multiple neurological diseases. To realize accurate and long-term tracking of mitochondria in neurons, we elaborately designed a novel aggregation-induced emission (AIE)-active luminogen, TPAP-C5-yne, where we selected a cationic pyridinium moiety to target mitochondria and employed an activated alkyne terminus to achieve long-term tracking through bioconjugation with amines on mitochondria. For the first time, we successfully achieved the accurate analysis of the motion of a single mitochondrion in live primary hippocampal neurons and the long-term tracking of mitochondria for up to a week in live neurons. Therefore, this new AIEgen can be used as a potential tool to study the transport of mitochondria in live neurons.

A novel bioconjugatable and photostable AIE luminogen has been rationally synthesized for precise and long-term tracking of neuron mitochondria.  相似文献   

12.
This study reports the synthesis and photophysical properties of a star‐shaped, novel, fluoranthene–tetraphenylethene (TFPE) conjugated luminogen, which exhibits aggregation‐induced blue‐shifted emission (AIBSE). The bulky fluoranthene units at the periphery prevent intramolecular rotation (IMR) of phenyl rings and induces a blueshift with enhanced emission. The AIBSE phenomenon was investigated by solvatochromic and temperature‐dependent emission studies. Nanoaggregates of TFPE, formed by varying the water/THF ratio, were investigated by SEM and TEM and correlated with optical properties. The TFPE conjugate was found to be a promising fluorescent probe towards the detection of nitroaromatic compounds (NACs), especially for 2,4,6‐trinitrophenol (PA) with high sensitivity and a high Stern–Volmer quenching constant. The study reveals that nanoaggregates of TFPE formed at 30 and 70 % water in THF showed unprecedented sensitivity with detection limits of 0.8 and 0.5 ppb, respectively. The nanoaggregates formed at water fractions of 30 and 70 % exhibit high Stern–Volmer constants (Ksv=79 998 and 51 120 m ?1, respectively) towards PA. Fluorescence quenching is ascribed to photoinduced electron transfer between TFPE and NACs with a static quenching mechanism. Test strips coated with TFPE luminogen demonstrate fast and ultra‐low‐level detection of PA for real‐time field analysis.  相似文献   

13.
An aggregation-induced emission (AIE) luminogen, tetraphenylethene, has been successfully grafted onto mesoporous silica SBA-15 for the first time. The materials emit blue light upon UV irradiation, and are photostable for the ibuprofen (IBU) drug loading and release process, indicating their great potential for biomedical applications.  相似文献   

14.
Fluorescent copper nanoclusters (CuNCs) have been widely used in chemical sensors, biological imaging, and light-emitting devices. However, individual fluorescent CuNCs have limitations in their capabilities arising from poor photostability and weak emission intensities. As one kind of aggregation-induced emission luminogen (AIEgen), the formation of aggregates with high compactness and good order can efficiently improve the emission intensity, stability, and tunability of CuNCs. Here, DNA nanoribbons, containing multiple specific binding sites, serve as a template for in situ synthesis and assembly of ultrasmall CuNCs (0.6 nm). These CuNC self-assemblies exhibit enhanced luminescence and excellent fluorescence stability because of tight and ordered arrangement through DNA nanoribbons templating. Furthermore, the stable and bright CuNC assemblies are demonstrated in the high-sensitivity detection and intracellular fluorescence imaging of biothiols.  相似文献   

15.
Fluorescent copper nanoclusters (CuNCs) have been widely used in chemical sensors, biological imaging, and light‐emitting devices. However, individual fluorescent CuNCs have limitations in their capabilities arising from poor photostability and weak emission intensities. As one kind of aggregation‐induced emission luminogen (AIEgen), the formation of aggregates with high compactness and good order can efficiently improve the emission intensity, stability, and tunability of CuNCs. Here, DNA nanoribbons, containing multiple specific binding sites, serve as a template for in situ synthesis and assembly of ultrasmall CuNCs (0.6 nm). These CuNC self‐assemblies exhibit enhanced luminescence and excellent fluorescence stability because of tight and ordered arrangement through DNA nanoribbons templating. Furthermore, the stable and bright CuNC assemblies are demonstrated in the high‐sensitivity detection and intracellular fluorescence imaging of biothiols.  相似文献   

16.
Pure organic luminogens with room temperature phosphorescence(RTP) have drawn much attention due to their fundamental importance and promising applications in optoelectronic devices, bioimaging, sensing, etc. Fluorescence-phosphorescence dual emission at room temperature, however, is rarely observed in pure organic materials. Herein, we reported a metal-and heavy-atom free pure organic luminogen with tert-butyl groups, DtBuCZBP, which is ready to form organogels in dimethylsulfoxide(DMSO).It emits prompt and delayed fluorescence, as well as RTP, namely dual emission in as-prepared solid, gels and polymeric films.To the best of our knowledge, it is the first example of metal-and heavy-atom free pure organic gelator with RTP emission. Such unique RTP and moreover dual emission properties in different states make DtBuCZBP a potential material for diverse applications.  相似文献   

17.
Thanks to the potential of aggregation-induced emission (AIE) phenomena, improved stabilities, and the good selectivity and sensitivity of the chemical responses exhibited by the products, coordination-driven self-assembly with tetraphenylethylene (TPE) units has recently received much attention and has been widely investigated for application in chemical sensors, cell imaging agents, light-harvesting systems, and others. Several reviews have emerged on the topics of AIE chemistry and aggregation-induced emission luminogen (AIEgen)-based supramolecular assembles, however, there is still a distinct lack of full overviews of emission enhancement from the viewpoint of metal-coordination effects. Thus, this minireview offers recent advances that have been made in the design and application of TPE-based metallacycles, metallacages, metal-organic frameworks (MOFs) and coordination polymers (CPs).  相似文献   

18.
Host–guest complexation between calix[5]arene and aggregation‐induced emission luminogen (AIEgen) can significantly turn off both the energy dissipation pathways of intersystem crossing and thermal deactivation, enabling the absorbed excitation energy to mostly focus on fluorescence emission. The co‐assembly of calix[5]arene amphiphiles and AIEgens affords highly emissive supramolecular AIE nanodots thanks to their interaction severely restricting the intramolecular motion of AIEgens, which also show negligible generation of cytotoxic reactive oxygen species. In vivo studies with a peritoneal carcinomatosis‐bearing mouse model indicate that such supramolecular AIE dots have rather low in vivo side toxicity and can serve as a superior fluorescent bioprobe for ultrasensitive fluorescence image‐guided cancer surgery.  相似文献   

19.
《Tetrahedron letters》2019,60(47):150968
Two triphenylamine or carbazole-based benzothiadiazole luminophors have been successfully synthesized and characterized. Interestingly, both the donor-acceptor-donor (D-A-D) type compounds 1 and 2 exhibited remarkable solvatochromism behavior. In addition, luminogen 1 showed reversible mechanochromism phenomenon involving red-shifted fluorescent color transformation from yellow to red. However, luminogen 2 showed switchable mechanochromism behavior involving blue-shifted fluorescent color change from yellow to yellow-green.  相似文献   

20.
Host–guest complexation between calix[5]arene and aggregation-induced emission luminogen (AIEgen) can significantly turn off both the energy dissipation pathways of intersystem crossing and thermal deactivation, enabling the absorbed excitation energy to mostly focus on fluorescence emission. The co-assembly of calix[5]arene amphiphiles and AIEgens affords highly emissive supramolecular AIE nanodots thanks to their interaction severely restricting the intramolecular motion of AIEgens, which also show negligible generation of cytotoxic reactive oxygen species. In vivo studies with a peritoneal carcinomatosis-bearing mouse model indicate that such supramolecular AIE dots have rather low in vivo side toxicity and can serve as a superior fluorescent bioprobe for ultrasensitive fluorescence image-guided cancer surgery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号