共查询到20条相似文献,搜索用时 15 毫秒
1.
To understand the origin of transmembrane potentials, formation of transient pores, and the movement of anions and cations across lipid membranes, we have performed systematic atomistic molecular dynamics simulations of palmitoyl-oleoyl-phosphatidylcholine (POPC) lipids. A double bilayer setup was employed and different transmembrane potentials were generated by varying the anion (Cl-) and cation (Na+) concentrations in the two water compartments. A transmembrane potential of approximately 350 mV was thereby generated per bilayer for a unit charge imbalance. For transmembrane potential differences of up to approximately 1.4 V, the bilayers were stable, over the time scale of the simulations (10-50 ns). At larger imposed potential differences, one of the two bilayers breaks down through formation of a water pore, leading to both anion and cation translocations through the pore. The anions typically have a short residence time inside the pore, while the cations show a wider range of residence times depending on whether they bind to a lipid molecule or not. Over the time scale of the simulations, we do not observe the discharge of the entire potential difference, nor do we observe pore closing, although we observe that the size of the pore decreases as more ions translocate. We also observed a rare lipid flip-flop, in which a lipid molecule translocated from one bilayer leaflet to the opposite leaflet, assisted by the water pore. 相似文献
2.
The concentration dependences of the label transport and shear viscosity coefficients for rod-like molecules in slit-shaped
pores were studied. The calculations were carried out using the lattice gas model, which describes a broad range of fluid
concentrations (from the gaseous to the liquid state) and temperatures (including the critical region). In the calculation
of the local distributions of mixture components in the equilibrium states, lateral interactions were taken into account.
The translational and rotational motions of molecules were described in terms of the transition state theory for nonideal
reaction systems, which took into account the influence of neighboring molecules on the height of the activation barrier.
The model equations reflect the pronounced anisotropy of the distribution of system components along the normal to the pore
wall surface and ordering effects of molecules along various directions.
Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1485–1494, September, 2006. 相似文献
5.
Monte Carlo simulations for the equation of state and phase behavior of hard spheres confined inside very narrow hard tubes are presented. For pores whose radii are greater than 1.1 hard sphere diameters, a sudden change in the density and the microscopic structure of the fluid is neatly observed, indicating the onset of freezing. In the high-density structure the particles rearrange in such a way that groups of three particles fit in sections across the pore. 相似文献
6.
The dependence of the critical temperature of capillary condensation of an adsorbate in cylindrical pores on the diameter of pores is investigated. The calculation is carried out in the quasi-chemical approximation with a calibration function providing the agreement of results for small pores with exact values obtained by the fragment method. The contribution of the size effect to the calibration function as a function of the diameter of pores is considered in terms of the concept of quasi-one-dimensional behavior of the adsorbate in narrow pores. Various adsorbate-adsorbate potentials are considered. 相似文献
7.
We report molecular dynamics simulation results for Stockmayer fluids confined to narrow slitlike pores with structureless, nonconducting walls. The translational and rotational dynamics of the dipolar particles have been investigated by calculating autocorrelation functions, diffusion coefficients, and relaxation times for various pore widths (five or less particle diameters) and directions parallel and perpendicular to the walls. The dynamic properties of the confined systems are compared to bulk properties, where corresponding bulk and pore states at the same temperature and chemical potential are determined in parallel grand canonical Monte Carlo simulations. We find that the dynamic behavior inside the pore depends on the distance from the walls and can be strongly anisotropic even in globally isotropic systems. This concerns especially the particles in the surface layers close to the walls, where the single particle and collective dipolar relaxation resemble that of true two-dimensional dipolar fluids with different in-plane and out-of-plane relaxations. On the other hand, bulklike relaxation is observed in the pore center of sufficiently wide pores. 相似文献
8.
Based on molecular dynamics (MD) simulations and a simple (Stockmayer) model we investigate the static and dynamic dielectric response of polar liquids confined to narrow slit pores. The MD simulations are used to calculate the time-dependent polarization fluctuations along directions parallel and perpendicular to the walls, from which the components of the frequency-dependent dielectric tensor can be derived via linear response theory. Our numerical results reveal that the system's response is strongly anisotropic. The parallel dielectric function, epsilonparallel(omega), has Debye-like character very similar to the corresponding isotropic bulk function, epsilonbulk(omega), at the same chemical potential. Indeed, the main confinement effect on epsilonparallel(omega) consists in a shift toward smaller values relative to the bulk function. On the other hand, in the perpendicular direction we observe a characteristic peak in the absorption part of the dielectric function, epsilonperpendicular(omega). This peak is absent in the bulk system and reflects strongly pronounced, damped oscillations in the polarization fluctuations normal to the walls. We discuss two possible origins of the oscillations (and the resulting absorption peak), that is collective oscillations of dipoles in clusters formed parallel to the walls, and the existence of a "dipolaron mode" previously observed in MD simulations of bulk polar fluids. 相似文献
9.
Capillary condensation and polymolecular adsorption in narrow slits has been calculated, where the fields of surface forces overlap one another. The calculations were carried out on the basis of macroscopic theory of dispersion forces and the isotherms of lone adsorption layers at the free surface. It has been shown that under the effect of mutual attraction through a gap, polymolecular adsorption films lose their stability long before their thickness has approached the half-width of a flat slit. This results in hysteresis of the capillary condensation in an ensemble of plane-parallel slits. In the case of systems having strong adsorbate-adsorbate interaction, there has been detected the existence of the lower limit of sizes of slit pores, wherein the capillary meniscus can coexist with adsorption films. With a slit width smaller than the critical one, the meniscus is likely to form a finite contact angle with “dry” surfaces of a slit. Thus an explanation has been given of the lower limit of the capillary condensation in an ensemble of flat-surface, slit pores. In the case of strong adsorbate-adsorbent interaction, the coexistence of meniscus with adsorption films within the scope of the approach used is possible in slits of any width. The value of corrections for the surface forces effect to be entered in the calculations of slit pores dimensions has been analyzed on the basis of the capillary condensation data obtained. In wedge-shaped slits there also exists, besides lower limit the upper limit of capillary hysteresis. 相似文献
10.
Monolayer physical adsorption has been considered, taking into consideration the intrinsic volume of the adsorbate molecules. Since an adsorbed molecule occupies not only the site on the surface but also some of the neighboring volume, it creates steric difficulties for the adsorption of other molecules and leads to underestimation of the measured surface area. As a result, this value depends on the size of the adsorbate molecules and the apparent surface dimension can be introduced, even if the surface of narrow pores has no irregularities of atomic scale size. This effect was shown by simulation of adsorption on the surface of Menger sponge. Experimental data for measuring D-values on silica gels with different pore size distributions are in line with this effect. 相似文献
11.
The effect of various salts on the viscosity, and by implication structure, of water in polymeric membrane pores of radius approximately 1.69 nm and low charge density has been studied. Permeation of pure water and various electrolyte solutions was analyzed using the Hagen-Poiseuille equation expressed in a ratio form to exclude membrane-specific quantities such as pore radius and length. The analysis produced viscosity ratios of electrolyte to pure water inside the membrane pores. Comparing the viscosity ratios inside the pores with their bulk counterparts showed that confinement significantly increased the sensitivity of water structure to the presence of ions. It has been found that, in relative terms in the pores, Cl- was a strong structure breaker, K+ was a moderately strong structure breaker, Na+ was a weak structure breaker, SO4(2-) was a weak structure maker, and Mg2+ was a strong structure maker. Predictive modeling of membrane separation performance would benefit from such effects being taken into account in cases where the pore ion concentrations may be high. 相似文献
12.
The micro-hydrodynamic method is applid to the calculation of the molecular transport in narrow channels in case of capillary
condensation, at the flow anisotropy resulted from the potential of the wall surface and/or of boundary vapor and fluid phases.
The mechanisms of molecular transport in the one-phase and two-phase fluid flows as a dependence of fluid density and adsorption
potential of channel walls are discussed. 相似文献
13.
We examine the transport of methane in microporous carbon by performing equilibrium and nonequilibrium molecular dynamics simulations over a range of pore sizes, densities, and temperatures. We interpret these simulation results using two models of the transport process. At low densities, we consider a molecular flow model, in which intermolecular interactions are neglected, and find excellent agreement between transport diffusion coefficients determined from simulation, and those predicted by the model. Simulation results indicate that the model can be applied up to fluid densities of the order to 0.1-1 nm(-3). Above these densities, we consider a slip flow model, combining hydrodynamic theory with a slip condition at the solid-fluid interface. As the diffusion coefficient at low densities can be accurately determined by the molecular flow model, we also consider a model where the slip condition is supplied by the molecular flow model. We find that both density-dependent models provide a useful means of estimating the transport coefficient that compares well with simulation. 相似文献
14.
The adsorption of rod-like molecules in slit-shaped pores was considered within the frame-work of the lattice-gas model. This
model is applicable over a broad range of fluid concentrations (from the gaseous to the liquid state) and temperatures (including
the critical region). In the calculation of the local distributions of mixture components in the equilibrium states, lateral
interactions are taken into account. The equations of the model reflect the strong anisotropy of the distribution of mixture
components along the normal to the pore wall surface and ordering of the rods along various directions.
Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1476–1484, September, 2006. 相似文献
15.
Correlation between phase behaviors of a Lennard-Jones fluid in and outside a pore is examined over wide thermodynamic conditions by grand canonical Monte Carlo simulations. A pressure tensor component of the confined fluid, a variable controllable in simulation but usually uncontrollable in experiment, is related with the pressure of a bulk homogeneous system in equilibrium with the confined system. Effects of the pore dimensionality, size, and attractive potential on the correlations between thermodynamic properties of the confined and bulk systems are clarified. A fluid-wall interfacial tension defined as an excess grand potential is evaluated as a function of the pore size. It is found that the tension decreases linearly with the inverse of the pore diameter or width. 相似文献
16.
Calculation of the transfer of molecules in porous systems requires self-consistent expressions describing the kinetic transfer coefficients for various concentrations and temperatures. The concentration dependences of heat conductivity and self-diffusion coefficients for fluids with different densities, ranging from rarefied gases to liquids, were considered in terms of a unified model. For monoatomic gases (argon), the model takes into account two energy transfer channels, namely, the vacancy mechanism and energy transfer through collisions of molecules. The former channel is characteristic of rarefied gases, while the latter is noted for condensed phases. The energy parameters of the model were determined on the basis of data on the heat conductivity coefficient in the bulk phase. The heat conductivity coefficient follows a linear temperature dependence for low density; in the medium and large density regions, these dependences follow a more complex pattern that changes depending on temperature. The influence of the interaction of atoms with the pore walls on the concentration dependences of the heat conductivity coefficients was investigated for different total amounts of the adsorbate. These coefficients depend appreciably on the distance to the pore wall and on the direction of heat transfer. 相似文献
17.
The phase diagrams describing condensation of adsorbate in micro- and mesoporous adsorbents having slit-shaped and cylindrical pores whose size varied from 1 to 20 monolayers were constructed. The study was performed using the lattice-gas model in the quasichemical approximation to take into account the intermolecular interactions. The phase diagrams for various values of the potential arising from different types of adsorbate--adsorbent interaction were analyzed for adsorption of helium, neon, methane, and carbon tetrachloride in graphite pores. Other adsorption systems are considered and the relationship between the pressure and temperature of adsorbate condensation is discussed. A nonmonotonic variation of the critical densities for pore widths from 3 to 10 molecular diameters was found. The pattern of this variation depends on the ratio of the energy of lateral interactions of the adsorbate molecules to the energy of interaction of the adsorbate molecules with pore walls. The critical temperature decreases monotonically with a decrease in the pore width. The stronger the adsorbate interaction with the pore walls, the greater the decrease in the critical temperature. 相似文献
18.
Computer simulation has been employed to study the structure of water condensate filling planar pores 1.25 and 0.62 nm wide located parallel to the basal face in a silver iodide crystal at 260 K. All stages of adsorption of single molecules up to complete pore filling have been described. At an initial stage, strong clustering of molecules is observed on the walls; then, the walls are covered with a monomolecular film; and, at the final stage, molecules are adhered to the surface of the film, thus filling the internal space of the pore. First, adsorption occurs at the wall containing positive ions on the surface and, then, on the opposite wall with negative ions. On both walls, adsorbed molecules are adhered to the surface via the interaction with ions of the second crystallographic layer; given this, two types, α and β, of molecule plane orientation are realized on opposite walls. The adhesion of an adsorbed molecular film to molecules filling the interior of the pore requires the partial transition of film molecules from the α- to the β-type orientation on one wall and the inverse transition on the other wall. The deficiency of α-oriented molecules on one wall and β-oriented ones on the other is the main reason for poor wettability of the surface of the monomolecular films adsorbed on the walls. In an extremely narrow pore, molecules are simultaneously captured in the field of both walls. The forces acting from the sides of both walls result in the separation of a film into spots having structures matched to the crystalline structure of each wall, with the film being on the verge of breakage. 相似文献
19.
The phase behavior of short-chain fluids in slit pores is investigated by using a nonlocal-density-functional theory that takes into account the effects of segment size, chain connectivity, and van der Waals attractions explicitly. The layering and capillary condensation/evaporation transitions are examined at different chain length, temperature, pore width, and surface energy. It is found that longer chains are more likely to show hysteresis loops and multilayer adsorptions along with the capillary condensation and evaporation. Decreasing temperature favors the inclusion of layering transitions into the condensation/evaporation hysteresis loops. For large pores, the surface energy has relatively small effect on the pressures of the capillary condensation and evaporation but affects significantly on the layering pressures. It is also observed that all phase transitions within the pore take place at pressures lower than the corresponding bulk saturation pressure. The critical temperature of condensation/evaporation is always smaller than that of the bulk fluid. All coexistence curves for confined phase transitions are contained within the corresponding bulk vapor-liquid coexistence curve. As in the bulk phase, the longer the chain length, the higher are the critical temperatures of phase transitions in the pore. 相似文献
20.
The free energy, entropy, and work of water vapor adsorption in planar pores with widths of 0.62 and 1.25 nm located in a silver iodide crystal parallel to its basal face have been computed at the molecular level. In contrast to adsorption on a free surface, the adsorption in the pores proceeds in three stages, i.e., the formation of molecular films on the walls, coalescence of the films, and densification of the fluid in the pore volume. At the second stage, the equilibrium between the fluid in the pore and the vapor over the pore at temperatures corresponding to normal conditions is thermodynamically unstable and accompanied by the development of a free energy barrier and the existence of metastable states. As temperature is elevated, the instability is gradually evened out; however, its signs remain preserved even at the boiling temperature of water. Extremely narrow pores with widths smaller than 1 nm are always filled with water under conditions of even a rather dry natural atmosphere. The filling of pores several nanometers wide in strongly unsaturated water vapors overcomes the free-energy barrier; however, the fluid that has filled the pore remains stable with respect to evaporation in vapors with densities lower than the density of saturated vapor by several orders of magnitude. The existence of the free-energy barrier and metastable states in nanosized breaks in crystals creates conditions for hysteresis of adsorption-desorption cycles. 相似文献
|