首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
We study the nucleation of a single pore in a fluctuating lipid membrane, specifically taking into account the membrane fluctuations, as well as the shape fluctuations of the pore. For large enough pores, the nucleation free energy is well-described by shifts in the effective membrane surface tension and the pore line tension. Using our framework, we derive the stability criteria for the various pore formation regimes. In addition to the well-known large-tension regime from the classical nucleation theory of pores, we also find a low-tension regime in which the effective line and surface tensions can change sign from their bare values. The latter scenario takes place at sufficiently high temperatures, where the opening of a stable pore of finite size is entropically favorable.  相似文献   

2.
The Monte Carlo bicanonical statistical ensemble method has been employed to calculate the free energy, entropy, and work of Cl? ion hydration in model planar pores 0.5 and 0.7 nm wide at 298 and 400 K. A detailed model of many-body interactions with the ion has been used, the model being matched to experimental data with respect to the free energy and enthalpy of attachment reaction in water vapor. Under the conditions of a restricted volume, the equilibrium size of a hydration shell substantially decreases, with the effect becoming stronger in the range of moderate and large sizes. In moderately supersaturated vapors, under the conditions of a nanopore, the ion loses its hydration shell as the temperature is decreased. In supersaturated vapors, the hydration shell formed on the ion is thermodynamically stable, while the stability crisis shifts to the region of larger sizes. The enhancement of the thermodynamic stability in the pore results from a rise in the chemical potential of molecules due to the deficiency of closet neighbors and a reduction in the entropy under the conditions of the restricted volume. As the temperature is elevated, the effect of ion displacement out of its hydration shell is leveled. The regularities derived in terms of the estimation model based on the capillary approximation are in qualitative agreement with the results of computer simulation.  相似文献   

3.
The effect of steric hindrances in extremely narrow planar pores on the structure of the hydration shell of the single-charged sodium cation in water vapors at room temperature was studied by computer simulation. The deficiency of empty space for the motion in the slit-like pore was shown to slightly affect the radial distribution of molecules around the ion. The integrated (over the directions) numbers of ion-oxygen atom bonds of molecules in the ion’s hydration shell did not change despite the change in the shape of the hydration cluster from three- to two-dimensional. It was concluded that the changes in the positions of molecules relative to the ion were mainly reduced to azimuthal displacements; as a result, the local bulk density of molecules in the pore was higher than at the same distances outside the pore for the same total number of molecules. The distribution of molecules over layers inside the pore demonstrates the effect of molecules spread over the walls. The effect of ion displacement from its own hydration shell found earlier for the free chloride ion is steadily reproduced under the pore conditions. An alternative explanation to this effect was proposed that does not suggest high ion polarizability.  相似文献   

4.
A hydrophobic pore of subnanometer dimensions can appear impermeable to an ion even though its radius is still much wider than that of the ion. Pores of molecular dimensions can be found, for instance, in carbon nanotubes, zeolites, or ion channel proteins. We quantify this barrier to ion permeation by calculating the potential of mean force from umbrella-sampled molecular dynamics simulations and compare them to continuum-electrostatic Poisson-Boltzmann calculations. The latter fail to describe the ion barrier because they do not account for the properties of water in the pore. The barrier originates from the energetic cost to desolvate the ion. Even in wide pores, which could accommodate an ion and its hydration shell, a barrier of several kT remains because the liquid water phase is not stable in the hydrophobic pore. Thus, the properties of the solvent play a crucial role in determining permeation properties of ions in confinement at the molecular scale.  相似文献   

5.
The structure and stability of hydrate shells of singly charged sodium and chlorine ions are studied by computer simulations under the conditions of nanoscopic flat pores with the use of the previously proposed detailed force field model containing polarization interactions, transferring charge effects as well as manybody interactions of covalent type. It is found that the effect of ousting a monatomic ion from its hydration shell, which has previously been observed by independent authors in bulk vapor, is also reproduced persistently in nanoscopic pores. Whereas the ousting of the ion from its hydration shell in bulk vapor is accompanied by the loss of thermodynamic stability of the system and at sufficiently high vapor pressure causes avalanche-like condensation, under the conditions of a nanoscopic pore the thermodynamic stability is retained. The obtained data show that the ousting of the ion from its hydration shell is a universal phenomenon covering the majority, if not all, of monatomic and, possibly, some of molecular ions.  相似文献   

6.
A charged Yukawa liquid confined in a slit nanopore is studied in order to understand excluded volume effects in the interaction force between the pore walls. A previously developed self-consistent scheme [S. Buyukdagli, C. V. Achim, and T. Ala-Nissila, J. Stat. Mech. 2011, P05033] and a new simpler variational procedure that self-consistently couple image forces, surface charge induced electric field, and pore modified core interactions are used to this aim. For neutral pores, it is shown that with increasing pore size, the theory predicts a transition of the interplate pressure from an attractive to a strongly repulsive regime associated with an ionic packing state, an effect observed in previous Monte Carlo simulations for hard core charges. We also establish the mean-field theory of the model and show that for dielectrically homogeneous pores, the mean-field regime of the interaction between the walls corresponds to large pores of size d > 4 ?. The role of the range of core interactions in the ionic rejection and interplate pressure is thoroughly analyzed. We show that the physics of the system can be split into two screening regimes. The ionic packing effect takes place in the regime of moderately screened core interactions characterized with the bare screening parameter of the Yukawa potential b ? 3/l(B), where l(B) is the Bjerrum length. In the second regime of strongly screened core interactions b ? 3/l(B), solvation forces associated with these interactions positively contribute to the ionic rejection driven by electrostatic forces and enhance the magnitude of the attractive pressure. For weakly charged pores without a dielectric discontinuity, core interactions make a net repulsive contribution to the interplate force and also result in oscillatory pressure curves, whereas for intermediate surface charges, these interactions exclusively strengthen the external pressure, thereby reducing the magnitude of the net repulsive interplate force. The pronounced dependence of the interplate pressure and ionic partition coefficients on the magnitude and the range of core interactions indicates excluded volume effects as an important ion specificity and a non-negligible ingredient for the stability of macromolecules in electrolyte solutions.  相似文献   

7.
Molecular dynamics simulations and both normal mode and hyperspherical mode analyses of NO-doped Kr solid are carried out in order to get insights into the structural relaxation of the medium upon electronic excitation of the NO molecule. A combined study is reported on the time evolution of the cage radius and on the density of vibrational states, according to the hyperspherical and normal mode analyses. For the hyperspherical modes, hyper-radial and grand angular contributions are considered. For the normal modes, radial and tangential contributions are examined. Results show that the first shell radius dynamics is driven by modes with frequencies at approximately 47 and approximately 15 cm-1. The first one is related to the ultrafast regime where a large part of the energy is transmitted to the lattice and the second one to relaxation and slow redistribution of the energy. The density of vibrational states gamma(omega) is characterized by a broad distribution of bands peaking around the frequencies of approximately 13, approximately 19, approximately 25, approximately 31, approximately 37, approximately 47, and approximately 103 cm-1 (very small band). The dominant modes in the relaxation process were at 14.89, 23.49, and 53.78 cm-1; they present the largest amplitudes and the greatest energy contributions. The mode at 14.89 cm-1 is present in both the fit of the first shell radius and in the hyper-radial kinetic energy spectrum and resulted the one with the largest amplitude, although could not be revealed by the total kinetic energy power spectrum.  相似文献   

8.
Computer simulation has been employed to study the effect of a confined space of a planar model pore with structureless hydrophobic walls on the hydration of Na+Cl ion pairs in water vapor at room temperature. A detailed many-body model of intermolecular interactions has been used. The model has been calibrated relative to experimental data on the free energy and enthalpy of the initial reactions of water molecule attachment to ions and the results of quantum-chemical calculations of the geometry and energy of Na+Cl (H2O)N clusters in stable configurations, as well as spectroscopic data on Na+Cl dimer vibration frequencies. The free energy and work of hydration, as well as the adsorption curve, have been calculated from the first principles by the bicanonical statistical ensemble method. The dependence of hydration shell size on interionic distance has been calculated by the method of compensation potential. The transition between the states of a contact (CIP) and a solvent-separated ion pair (SSIP) has been reproduced under the conditions of a nanopore. The influence of the pore increases with the hydration shell size and leads to the stabilization of the SSIP states, which are only conditionally stable in bulk water vapor.  相似文献   

9.
10.
11.
Structural and dynamical properties of the Tl(I) ion in dilute aqueous solution have been investigated by ab initio quantum mechanics in combination with molecular mechanics. The first shell plus a part of the second shell were treated by quantum mechanics at Hartree-Fock level, the rest of the system was described by an ab initio constructed potential. The radial distribution functions indicate two different bond lengths (2.79 and 3.16 A) in the first hydration shell, in good agreement with large-angle X-ray scattering and extended X-ray absorption fine structure spectroscopy results. The average first shell coordination number was found as 5.9, and several other structural parameters such as coordination number distributions, angular distribution functions, and tilt- and theta-angle distributions were evaluated. The ion-ligand vibration spectrum and reorientational times were obtained via velocity auto correlation functions. The Tl-O stretching force constant is very weak with 5.0 N m(-1). During the simulation, numerous water exchange processes took place between first and second hydration shell and between second shell and bulk. The mean ligand residence times for the first and second shell were determined as 1.3 and 1.5 ps, respectively, indicating Tl(I) to be a typical "structure-breaker". The calculated hydration energy of -84 +/- 16 kcal mol(-1) agrees well with the experimental value of -81 kcal mol(-1). All data obtained for structure and dynamics of hydrated Tl(I) characterize this ion as a very special case among all monovalent metal ions, being the most potent "structure-breaker", but at the same time forming a distinct second hydration shell and thus having a far-reaching influence on the solvent structure.  相似文献   

12.
The Monte Carlo bicanonical statistical ensemble method has been employed to calculate the dependences of the Gibbs free energy, formation work, and entropy on the size of a hydration shell grown from water vapor on single-charged chlorine anion in a model planar nanopore with hydrophilic structureless walls at 298 K. A refined model comprising many-particle polarization interactions and calibrated with respect to experimental data on the free energy and enthalpy of the initial reactions of attachment of water molecules to the ion has been used. It has been found that a weak hydrophilicity of pore walls leads to destabilization of the hydration shell, while a strong one, on the contrary, causes its stabilization. The physical reason for the instability in the field of hydrophilic walls qualitatively differs from that under the conditions of hydration in bulk water vapor.  相似文献   

13.
Structural and dynamical properties of the Cr(III) ion in aqueous solution have been investigated using a combined ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulation. The hydration structure of Cr(III) was determined in terms of radial distribution functions, coordination numbers, and angular distributions. The QM/MM simulation gives coordination numbers of 6 and 15.4 for the first and second hydration shell, respectively. The first hydration shell is kinetically very inert but by no means rigid and variations of the first hydration shell geometry lead to distinct splitting in the vibrational spectra of Cr(H(2)O)(6) (3+). A mean residence time of 22 ps was obtained for water ligands residing in the second hydration shell, which is remarkably shorter than the experimentally estimated value. The hydration energy of -1108 +/- 7 kcal/mol, obtained from the QM/MM simulation, corresponds well to the experimental hydration enthalpy value.  相似文献   

14.
Classical molecular dynamics (MD) and combined quantum mechanical/molecular mechanical (QM/MM) MD simulations have been performed to investigate the structural and dynamical properties of the Tl(III) ion in water. A six-coordinate hydration structure with a maximum probability of the Tl-O distance at 2.21 A was observed, which is in good agreement with X-ray data. The librational and vibrational spectra of water molecules in the first hydration shell are blue-shifted compared with those of pure liquid water, and the Tl-O stretching force constant was evaluated as 148 Nm(-1). Both structural and dynamical properties show a distortion of the first solvation shell structure. The second shell ligands' mean residence time was determined as 12.8 ps. The Tl(III) ion can be classified as "structure forming" ion; the calculated hydration energy of -986 +/- 9 kcal mol agrees well with the experimental value of -986 kcal mol.  相似文献   

15.
The conformations, the values of the lateral transport coefficient of a charged biomolecule (desmopressin) in the adsorbed layer and in the liquid layers above the adsorbed layer, the potential energies of the interaction between the biomolecules located in different liquid layers with the charged solid surface and with the biomolecules in the adsorbed layer, the potential energies of the interaction between water molecules in the hydration layers surrounding the conformations of the biomolecules in different layers, as well as the structure and number of hydration layers between the different conformations of desmopressin, were determined by molecular dynamics simulation studies. The results show that the lateral mobility of the adsorbed desmopressin is approximately equal to zero and the value of the lateral transport coefficient of the biomolecule in the liquid layers located above the adsorbed layer increases as the distance of the liquid layer from the charged solid surface increases. But the values of the lateral transport coefficient of the biomolecule in the liquid layers above the adsorbed layer are lower in magnitude than the value of the transport coefficient of desmopressin along the direction normal to the charged solid surface in the liquid phase located above the vacant charged sites of the solid surface, and these differences in the values of the transport coefficients have important implications with respect to the replenishment of the biomolecules in the inner parts of a channel (pore), the overall rate of adsorption, and the form of the constitutive equations that would have to be used in macroscopic models to describe the mechanisms of mass transfer and adsorption in the pores of adsorbent media. Furthermore, a novel method is presented in this work that utilizes the information about the sizes of the conformations of the biomolecule in the adsorbed layer and in the liquid layers above the adsorbed layer along the direction that is normal to the charged solid surface, as well as the number and size of the hydration layers along the same direction, and could be used to estimate the value of the lower bound of the linear characteristic dimension of a pore (i.e., pore radius) in porous adsorbent media (e.g., porous adsorbent particles; skeletons of porous monoliths) in order to realize effective transport and overall adsorption rate.  相似文献   

16.
Yang T  Bursten BE 《Inorganic chemistry》2006,45(14):5291-5301
The structures of aquo complexes of the curium(III) ion have been systematically studied using quantum chemical and molecular dynamics (MD) methods. The first hydration shell of the Cm3+ ion has been calculated using density functional theory (DFT), with and without inclusion of the conductor-like polarizable continuum medium (CPCM) model of solvation. The calculated results indicate that the primary hydration number of Cm3+ is nine, with a Cm-O bond distance of 2.47-2.48 A. The calculated bond distances and the hydration number are in excellent agreement with available experimental data. The inclusion of a complete second hydration shell of Cm3+ has been investigated using both DFT and MD methods. The presence of the second hydration shell has significant effects on the primary coordination sphere, suggesting that the explicit inclusion of second-shell effects is important for understanding the nature of the first shell. The calculated results indicate that 21 water molecules can be coordinated in the second hydration shell of the Cm3+ ion. MD simulations within the hydrated-ion model suggest that the second-shell water molecules exchange with the bulk solvent with a lifetime of 161 ps.  相似文献   

17.
Structural and dynamical properties of the TiO(2+) ion in aqueous solution have been investigated by using the new ab initio quantum mechanical charge field (QMCF) molecular dynamics (MD) formalism, which does not require any other potential functions except those for solvent-solvent interactions. Both first and second hydration shell have been treated at Hartree-Fock (HF) quantum mechanical level. A Ti-O bond distance of 1.5 A was observed for the [Ti=O](2+) ion. The first hydration shell of the ion shows a varying coordination number ranging from 5 to 7, five being the dominant one and representing one axial and four equatorial water molecules directly coordinated to Ti, which are located at 2.3 A and 2.1 A, respectively. The flexibility in the coordination number reflects the fast exchange processes, which occur only at the oxo atom, where water ligands are weakly bound through hydrogen bonds. Considering the first shell hydration, the composition of the TiO(2+) hydrate can be characterized as [(H(2)O)(0.7)(H(2)O)(4) (eq)(H(2)O)(ax)](2+). The second shell consists in average of 12 water molecules located at a mean distance of 4.4 A. Several other structural parameters such as radial and angular distribution functions and coordination number distributions were analyzed to fully characterize the hydration structure of the TiO(2+) ion in aqueous solution. For the dynamics of the TiO(2+) ion, different sets of dynamical parameters such as Ti=O, Ti-O(eq), and Ti-O(ax) stretching frequencies and ligands' mean residence times were evaluated. During the simulation time of 15 ps, 3 water exchange processes in the first shell were observed at the oxo atom, corresponding to a mean residence time of 3.6 ps. The ligands' mean residence time for the second shell was determined as 3.5 ps.  相似文献   

18.
Mass transport across surfactant-covered oil-water interfaces of microemulsions plays an important role in numerous applications. In the current work, we use coarse-grained molecular dynamics simulations to investigate model systems containing flat hexadecane-water interfaces covered by monolayers of nonionic surfactants of various lengths. Several properties of the surfactant monolayers relevant to the mass transport are considered, including the monolayer microstructure, dynamics, and a free energy barrier to the solute transport. It is observed that the dominant contribution of a surfactant monolayer to the free energy barrier is a steric repulsion caused by a local density increase inside the monolayer. The local densities, and hence the free energy barriers, are larger for monolayers composed of longer surfactants. Since it is likely that the solute transport mechanism involves a sequence of jumps between short-lived pores within a monolayer, we perform a detailed analysis of structure, size, and lifetime of these pores. We demonstrate that the pore statistics is consistent with predictions of percolation theory and apply this theory to identify the characteristic length scale of the monolayer microstructure. The obtained pore structures are sensitive to minute changes of surfactant configurations occurring on the picosecond time scale. To reduce this sensitivity, the pores are averaged over short time intervals. The optimal duration of these time intervals is estimated from analysis of dynamics of pores with diameters comparable to or exceeding the characteristic percolation length scale. The developed approach allows one to filter out transient events of the pore dynamics and to focus on events leading to substantial changes of the monolayer microstructure.  相似文献   

19.
Computer simulation has been employed to obtain equilibrium molecular configurations, as well as spatial and angular distributions of water molecules, under the action of the field of a single-charged chlorine anion in a model planar nanopore with structureless walls at room temperature. A detailed many-body model of intermolecular interactions calibrated in accordance with experimental data relative to the free energy of hydration in water vapor has been used. The effect of the hydrophilicity of the walls on the ion hydration shell consists in its disintegration into two parts, i.e., molecules retained exclusively due to the interactions with the ion and those adsorbed on the walls. In the regime of strong interactions with the walls, two relatively stable states arise with asymmetric distribution of molecules between opposite walls. The existence of the two metastable states destabilizes the position of ions inside a pore and is expected to accelerate their adsorption on the walls.  相似文献   

20.
The mechanism of chemisorption of aqueous metal ions at surfaces has long been a topical issue in such fields as soil chemistry and bioenvironmental science. Here it is quantitatively demonstrated for the first time that release of water from the inner hydration shell is the rate-limiting step in inner-sphere surface complexation. The reactive intermediate is an outer-sphere complex between metal ion and surface site, with an electrostatically controlled stability defined by Boltzmann statistics. Using tabulated dehydration rate constants for metal ions, the resulting scheme allows for prediction of rates of sorption of aqueous metal ions at any type of complexing surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号