首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The sequential hydration of a number of sodiated amino acids is investigated using a high-pressure mass spectrometer. Ions produced continuously by electrospray are injected into the reaction chamber in the pulsed mode where the hydration equilibria, AANa+(H2O)n-1+H2O=AANa+(H2O)n (AA=Val, Pro, Met, Phe, and Gln), and the temperature dependence of the equilibrium constants are measured in the gas phase at 10 mbar (N2 bath gas and known pressure of H2O). The thermochemical properties, DeltaH degrees n, DeltaS degrees n, and DeltaG degrees n, for the hydrated systems are determined and discussed in conjunction with the structural forms. The results show that the binding energies of water to the AANa+ complexes decrease with the increasing number of water molecules. The present results from equilibrium measurements are compared to those from earlier studies obtained by other techniques. A correlation between the free energy changes for the addition of the first and second water molecules to AANa+, and the corresponding sodium ion affinities, is observed. Generally, the hydration free energy becomes weaker as the AA-Na+ bond strength increases.  相似文献   

2.
Noncovalent interactions between alkali metal cations and the various low-energy tautomeric forms of cytosine are investigated both experimentally and theoretically. Threshold collision-induced dissociation (CID) of M(+)(cytosine) complexes with Xe is studied using guided ion beam tandem mass spectrometry, where M(+) = Li(+), Na(+), and K(+). In all cases, the only dissociation pathway observed corresponds to endothermic loss of the intact cytosine molecule. The cross-section thresholds are interpreted to yield 0 and 298 K bond dissociation energies (BDEs) for the M(+)(cytosine) complexes after accounting for the effects of multiple ion-neutral collisions, the kinetic and internal energy distributions of the reactants, and dissociation lifetimes. Ab initio calculations are performed at the MP2(full)/6-31G* level of theory to determine the structures of the neutral cytosine tautomers, the M(+)(cytosine) complexes, and the TSs for unimolecular tautomerization. The molecular parameters derived from these structures are employed for the calculation of the unimolecular rates for tautomerization and the thermochemical analysis of the experimental data. Theoretical BDEs of the various M(+)(cytosine) complexes and the energy barriers for the unimolecular tautomerization of these complexes are determined at MP2(full)/6-311+G(2d,2p) level of theory using the MP2(full)/6-31G* optimized geometries. In addition, BDEs for the Li(+)(cytosine) complexes are also determined at the G3 level of theory. Based upon the tautomeric mixture generated upon thermal vaporization of cytosine, calculated M(+)-cytosine BDEs and barriers to tautomerization for the low-energy tautomeric forms of M(+)(cytosine), and measured thresholds for CID of M(+)(cytosine) complexes, we conclude that tautomerization occurs during both complex formation and CID.  相似文献   

3.
Ab initio MP2 and DFT studies on the tautomers of cytosine and the related hydrated tautomers have been carried out. The ground‐state structures of four tautomers of cytosine and related transition states were fully optimized. The vibrational frequency analysis was performed on all the optimized structures. Detailed intrinsic reaction coordinate (IRC) calculations were carried out to guarantee the optimized transition‐state structures being connected to the related tautomers. We obtained the relative stability order for the tautomers of cytosine and the related hydrated tautomers. In the isolated and hydrated condition, the bond types of C(2) O(7) and C(4) N(8) greatly affect the stability of the cytosine tautomers. Moreover, we have explored the influence of the water molecules on the intramolecular proton transfer between the keto and enol forms of the cytosine tautomers. The first water molecule obviously decreases the isomerization activation energy for the monohydrated cytosine tautomers. It is shown that the isomerization energy barrier changes only a little when the second and third water molecules are added in the reaction loop. The solvent effects have an obvious influence on the proton‐transfer barrier of the isolated cytosine. However, the solvent effects seem to be insignificant for the isomerization energy barriers of the monohydrated, dihydrated and trihydrated cytosine. The water molecule in these complexes can be looked on as the explicit water. Therefore, the explicit water model may be more credible to explore the intramolecular proton transfer, in comparison with the PCM which is the implicit water model.  相似文献   

4.
Coordination complexes of the magnesium nitrate cation with water [MgNO(3)(H(2)O)(n)](+) up to n=7 are investigated by experiment and theory. The fragmentation patterns of [MgNO(3)(H(2)O)(n)](+) clusters generated via electrospray ionization indicate a considerable change in stability between n=3 and 4. Further, ion-molecule reactions of mass-selected [MgNO(3)(H(2)O)(n)](+) cations with D(2)O reveal the occurrence of consecutive replacement of water ligands by heavy water, and in this respect the complexes with n=4 and 5 are somewhat more reactive than their smaller homologs with n=1-3 as well as the larger clusters with n=6 and 7. For the latter two ions, the theory suggests the existence of isomers, such as complexes with monodentate nitrato ligands as well as solvent-separated ion pairs with a common solvation shell. The reactions observed and the ion thermochemistry are discussed in the context of ab initio calculations, which also reveal the structures of the various hydrated cation complexes.  相似文献   

5.
The bond dissociation energies for losing one water from Cd(2+)(H(2)O)(n) complexes, n = 3-11, are measured using threshold collision-induced dissociation in a guided ion beam tandem mass spectrometer coupled with a thermal electrospray ionization source. Kinetic energy dependent cross sections are obtained for n = 4-11 complexes and analyzed to yield 0 K threshold measurements for loss of one, two, and three water ligands after accounting for multiple collisions, kinetic shifts, and energy distributions. The threshold measurements are converted from 0 to 298 K values to give the hydration enthalpies and free energies for sequentially losing one water from each complex. Theoretical geometry optimizations and single point energy calculations are performed on reactant and product complexes using several levels of theory and basis sets to obtain thermochemistry for comparison to experiment. The charge separation process, Cd(2+)(H(2)O)(n) → CdOH(+)(H(2)O)(m) + H(+)(H(2)O)(n-m-1), is also observed for n = 4 and 5 and the competition between this process and water loss is analyzed. Rate-limiting transition states for the charge separation process at n = 3-6 are calculated and compared to experimental threshold measurements resulting in the conclusion that the critical size for this dissociation pathway of hydrated cadmium is n(crit) = 4.  相似文献   

6.
The gas-phase structures of alkali metal cation-cytosine complexes generated by electrospray ionization are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra of five alkali metal cation–cytosine complexes exhibit both similar and distinctive spectral features over the range of ~1000–1900 cm-1. The IRMPD spectra of the Li+(cytosine), Na+(cytosine), and K+(cytosine) complexes are relatively simple but exhibit changes in the shape and shifts in the positions of several bands that correlate with the size of the alkali metal cation. The IRMPD spectra of the Rb+(cytosine) and Cs+(cytosine) complexes are much richer as distinctive new IR bands are observed, and the positions of several bands continue to shift in relation to the size of the metal cation. The measured IRMPD spectra are compared to linear IR spectra of stable low-energy tautomeric conformations calculated at the B3LYP/def2-TZVPPD level of theory to identify the conformations accessed in the experiments. These comparisons suggest that the evolution in the features in the IRMPD action spectra with the size of the metal cation, and the appearance of new bands for the larger metal cations, are the result of the variations in the intensities at which these complexes can be generated and the strength of the alkali metal cation-cytosine binding interaction, not the presence of multiple tautomeric conformations. Only a single tautomeric conformation is accessed for all five alkali metal cation–cytosine complexes, where the alkali metal cation binds to the O2 and N3 atoms of the canonical amino-oxo tautomer of cytosine, M+(C1).
Figure
?  相似文献   

7.
Schiff base (L) ligand is prepared via condensation of pyridine-2,6-dicarboxaldehyde with -2-aminopyridine. The ligand and its metal complexes are characterized based on elemental analysis, mass, IR, solid reflectance, magnetic moment, molar conductance, and thermal analyses (TG, DTG and DTA). The molar conductance reveals that all the metal chelates are non-electrolytes. IR spectra shows that L ligand behaves as neutral tridentate ligand and bind to the metal ions via the two azomethine N and pyridine N. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral (Cr(III), Fe(III), Co(II), Ni(II), Cu(II), and Th(IV)) and tetrahedral (Mn(II), Cd(II), Zn(II), and UO2(II)). The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, ΔH*, ΔS* and ΔG* are calculated from the DTG curves using Coats-Redfern method. The synthesized ligand, in comparison to their metal complexes also was screened for its antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pyogones and Fungi (Candida). The activity data shows that the metal complexes to be more potent/antibacterial than the parent Schiff base ligand against one or more bacterial species.  相似文献   

8.
Hydration reactions of deprotonated nucleobases (uracil, thymine, 5-fluorouracil,2-thiouracil, cytosine, adenine, and hypoxanthine) produced by electrospray have been experimentally studied in the gas phase at 10 mbar using a pulsed ion-beam high-pressure mass spectrometer. The thermochemical data, ΔH o , ΔS o , and ΔG o , for the monohydrated systems were determined. The hydration enthalpies were found to be similar for all studied systems and varied between 39.4 and 44.8 kJ/mol. A linear correlation was found between water binding energies in the hydrated complexes and the corresponding acidities of the most acidic site of nucleobases. The structural and energetic aspects of the precursors for the hydrated complexes are discussed in conjunction with available literature data.
Graphical Abstract ?
  相似文献   

9.
Solid complexes, RE(Et2dtc)3(phen) (RE=La, Pr, Nd, Sm—Lu), were synthesized with sodium diethyldithiocarbamate (NaEt2dtc3H2O), 1,10-phenanthroline (o-phen?H2O) and hydrated lanthanide chlorides in absolute ethanol. The constant-volume combustion energies of complexes, Δ C U, were determined by a precise rotating-bomb calorimeter at 298.15 K. The standard enthalpies of combustion, ΔCHm θ, and standard enthalpies of formation, ΔfHm θ, were calculated for these complexes, respectively. The experiment results showed the “tripartite effect” of rare earth.  相似文献   

10.
Yang  Xuwu  Zhu  Li  Chen  Sanping  Gao  Shengli  Shi  Qizhen 《中国科学:化学(英文版)》2005,48(1):88-92

Solid complexes, RE(Et2dtc)3(phen) (RE=La, Pr, Nd, Sm—Lu), were synthesized with sodium diethyldithiocarbamate (NaEt2dtc3H2O), 1,10-phenanthroline (o-phen•H2O) and hydrated lanthanide chlorides in absolute ethanol. The constant-volume combustion energies of complexes, Δ C U, were determined by a precise rotating-bomb calorimeter at 298.15 K. The standard enthalpies of combustion, ΔCHm θ, and standard enthalpies of formation, ΔfHm θ, were calculated for these complexes, respectively. The experiment results showed the “tripartite effect” of rare earth.

  相似文献   

11.
The thermochemistry of stepwise hydration of several potassiated amino acids was studied by measuring the gas-phase equilibria, AAK(+)(H(2)O)(n-1) + H(2)O = AAK(+)(H(2)O)(n) (AA = Gly, AL, Val, Met, Pro, and Phe), using a high-pressure mass spectrometer. The AAK(+) ions were obtained by electrospray and the equilibrium constants K(n-1,n) were measured in a pulsed reaction chamber at 10 mbar bath gas, N(2), containing a known partial pressure of water vapor. Determination of the equilibrium constants at different temperatures was used to obtain the DeltaH(n)(o), DeltaS(n)(o), and DeltaG(n)(o) values. The results indicate that the water binding energy in AAK(+)(H(2)O) decreases as the K(+) affinity to AA increases. This trend in binding energies is explained in terms of changes in the side-chain substituent, which delocalize the positive charge from K(+) to AA in AAK(+) complexes, varying the AAK(+)-H(2)O electrostatic interaction.  相似文献   

12.
This theoretical study investigates possible synthetic routes to cytosine, uracil and thymine in the gas phase from precursor molecules that have been detected in interstellar media. Studies at the CCSD(T)/6-311++G(d,p)//B3LYP/6-311++G(d,p) level of theory suggest that: The reactions between :CCCNH and :CCCO with monosolvated urea may constitute viable interstellar syntheses of cytosine and uracil. No low energy equilibration between cytosine and uracil has been demonstrated. The interaction of :CH(2) with the 5 C-H bond of uracil may form thymine in an energetically favourable reaction, but competing reactions where :CH(2) reacts with double bonds and other CH and NH bonds of uracil, reduce the effectiveness of this synthesis. The reaction between the hydrated propional enolate anion and isocyanic acid may produce thymine, in a reaction sequence where ΔG(reaction)(298 K) is -22 kJ mol(-1) and the maximum energy requirement (barrier to the first transition state) is only 47 kJ mol(-1).  相似文献   

13.
Standard thermochemical data (in the form of Δ(f)H° and Δ(f)G°) are available for crystalline (c) materials but rarely for their corresponding amorphous (a) counterparts. This paper establishes correlations between the sets of data for the two material forms (where known), which can then be used as a guideline for estimation of missing data. Accordingly, Δ(f)H°(a)/kJ mol(-1) ≈ 0.993Δ(f)H°(c)/kJ mol(-1) + 12.52 (R(2) = 0.9999; n = 50) and Δ(f)G°/kJ mol(-1) ≈ 0.988Δ(f)H°(c)/kJ mol(-1) + 0.70 (R(2) = 0.9999; n = 10). Much more tentatively, we propose that S°(298)(c)/J K(-1) mol(-1) ≈ 1.084S°(298)(c)/J K(-1) mol(-1) + 6.54 (R(2) = 0.9873; n = 11). An amorphous hydrate enthalpic version of the Difference Rule is also proposed (and tested) in the form [Δ(f)H°(M(p)X(q)·nH(2)O,a) - Δ(f)H°(M(p)X(q),a)]/kJ mol(-1) ≈ Θ(Hf)n ≈ -302.0n, where M(p)X(q)·nH(2)O represents an amorphous hydrate and M(p)X(q) the corresponding amorphous anhydrous parent salt.  相似文献   

14.
Singly hydrated clusters of deprotonated amino acids were studied using an electrospray high-pressure mass spectrometer equipped with a pulsed ion-beam reaction chamber. Thermochemical data, DeltaH(o), DeltaS(o), and DeltaG(o), for the hydration reaction [AA - H](-) + H(2)O = [AA - H](-).(H(2)O) were obtained from gas-phase equilibria determinations for AA = Gly, Ala, Val, Pro, Phe, Lys, Met, Trp, Gln, Arg, and Asp. The hydration free-energy changes are found to depend significantly on the side-chain substituents. The water binding energy in [AA - H](-).(H(2)O) increases with the gas-phase acidity of AA. The anionic hydrogen bond strengths in [AA - H](-).(H(2)O) are compared with those of the cationic bonds in the corresponding AAH(+).(H(2)O) systems.  相似文献   

15.
This paper is a review of the kinetic method for the determination of thermochemical values for gas-phase molecules. In addition, we have explored the utility of the kinetic method to obtain meaningful relative binding energies of macromolecules for polyatomic substrates using a system comprising poly(methylmethacrylate) (PMMA) oligomers and doubly protonated diaminoalkanes. The major factors which determined the suitability of the kinetic method for this system were identified as (i) the structural arrangement of the parent ion complex, (ii) possible reverse activation barriers, and (iii) the evaluations of Δ(ΔS?). Molecular mechanics/molecular dynamics (MM/MD) simulations, together with ion mobility spectrometry, suggests the parent ion complexes represent a relatively equal sharing of the substrate between two the PMMA oligomers within the complex and that the two PMMA oligomers interact almost exclusively with the substrate, and not with each other. MS/MS of the trimeric parent complexes resulted in one PMMA unit leaving as a neutral which suggests very limited coulombic repulsion (that would contribute to a reverse activation barrier). The drift times of PMMA-diaminoalkane complexes that were generated directly by ESI-MS or by dissociation of a trimeric PMMA-diaminoalkane-PMMA complex were found to be identical, and when combined with MM/MD simulations suggested that the product PMMA-diaminoalkane dication has the same conformation as it does when part of a trimeric complex. This is evidence for Δ(ΔS?) ? Δ(ΔS) and using a statistical mechanics approach, Δ(ΔS) ? 0. The effective temperature variable in the kinetic method expression was found to decrease as a function of the size of the trimeric complex, suggesting that the population distribution of the dissociating ensemble of complexes narrows as size increases.  相似文献   

16.
A density functional study of the effects of microhydration on the guanine-cytosine (GC) base pair and its anion radical is presented. Geometries of the GC base pair in the presence of 6 and 11 water molecules were fully optimized in the neutral (GC-nH2O) and anion radical [(GC-nH2O)*-] (n = 6 and 11) states using the B3LYP method and the 6-31+G** basis set. Further, vibrational frequency analysis at the same level of theory (B3LYP/6-31+G**) was also performed to ensure the existence of local minima in these hydrated structures. It was found that water molecules surrounding the GC base pair have significant effects on the geometry of the GC base pair and promote nonplanarity in the GC base pair. The calculated structures were found to be in good agreement with those observed experimentally and obtained in molecular dynamics (MD) simulation studies. The water molecules in neutral GC-nH2O complexes lie near the ring plane of the GC base pair where they undergo hydrogen bonding with both GC and each other. However, in the GC anion radical complexes (GC-nH2O, n = 6, 11), the water molecules are displaced substantially from the GC ring plane. For GC-11H2O*-, a water molecule is hydrogen-bonded with the C6 atom of the cytosine base. We found that the hydration shell initially destabilizes the GC base pair toward electron capture as a transient anion. Energetically unstable diffuse states in the hydration shell are suggested to provide an intermediate state for the excess electron before molecular reorganization of the water molecules and the base pair results in a stable anion formation. The singly occupied molecular orbital (SOMO) in the anion radical complexes clearly shows that an excess electron localizes into a pi orbital of cytosine. The zero-point-energy (ZPE-) corrected adiabatic electron affinities (AEAs) of the GC-6H2O and GC-11H2O complexes, at the B3LYP/6-31+G** level of theory, were found to be 0.74 and 0.95 eV, respectively. However, the incorporation of bulk water as a solvent using the polarized continuum model (PCM) increases the EAs of these complexes to 1.77 eV.  相似文献   

17.
The minimal essential section of DNA helices, the dinucleoside phosphate deoxyguanylyl-3',5'-deoxycytidine dimer octahydrate, [dGpdC](2), has been constructed, fully optimized, and analyzed by using quantum chemical methods at the B3LYP/6-31+G(d,p) level of theory. Study of the electrons attached to [dGpdC](2) reveals that DNA double strands are capable of capturing low-energy electrons and forming electronically stable radical anions. The relatively large vertical electron affinity (VEA) predicted for [dGpdC](2) (0.38 eV) indicates that the cytosine bases are good electron captors in DNA double strands. The structure, charge distribution, and molecular orbital analysis for the fully optimized radical anion [dGpdC](2)(·-) suggest that the extra electron tends to be redistributed to one of the cytosine base moieties, in an electronically stable structure (with adiabatic electron affinity (AEA) 1.14 eV and vertical detachment energy (VDE) 2.20 eV). The structural features of the optimized radical anion [dGpdC](2)(·-) also suggest the probability of interstrand proton transfer. The interstrand proton transfer leads to a distonic radical anion [d(G-H)pdC:d(C+H)pdG](·-), which contains one deprotonated guanine anion and one protonated cytosine radical. This distonic radical anion is predicted to be more stable than [dGpdC](2)(·-). Therefore, experimental evidence for electron attachment to the DNA double helices should be related to [d(G-H)pdC:d(C+H)pdG](·-) complexes, for which the VDE might be as high as 2.7 eV (in dry conditions) to 3.3 eV (in fully hydrated conditions). Effects of the polarizable medium have been found to be important for increasing the electron capture ability of the dGpdC dimer. The ultimate AEA value for cytosine in DNA duplexes is predicted to be 2.03 eV in aqueous solution.  相似文献   

18.
Energy wasting charge recombination is an efficiency limiting process in efforts to achieve solar energy storage. Here, density functional theory is used to explore the thermodynamics of photochemical energy storage reactions in several ruthenium polypyridyl complexes where heterolytic halogen-carbon bond scission occurs after light-induced formation of the triplet metal to ligand charge transfer ((3)MLCT) state, as seen in the following reaction: [Ru(II)(A)(n)(L-X)](2+) + hν → [Ru(III)(A)(n)(L-X)(?-)](2+)* → [Ru(III)(A)(n)(L·)](3+) + X(-) (L = polypyridine ligand; X = Cl, Br, and I; A = ancillary ligand). A thermochemical cycle is employed to determine structural and electronic factors influencing ΔE(rxn). Significant energetic penalties in the oxidation of the metal center are mitigated through methylation of ancillary ligands or introduction of amine ancillary ligands. Methylation of the halogenated ligand maintains energy stored in the (3)MLCT state. Reduction in ΔE(rxn) is obtained by exploiting strain in the coordination geometry or in sterically encumbered ligands that is released upon bond breaking. Formation of a contact ion pair is significantly more favorable than complete separation of charged products, and shows negative ΔE with respect to the (3)MLCT state in certain cases. Future tunability in stored energy may be achieved through careful manipulation of ligand structure and charge on ancillary ligands.  相似文献   

19.
Two isostructural, nonclassical Co(H(2)) complexes are prepared from their Co(N(2)) precursors using tris(phosphino)silyl and tris(phosphino)borane ancillary ligands. Comproportionation of CoBr(2) and Co metal in the presence of TPB (tris-(o-diisopropylphophinophenyl)borane) gives (TPB)CoBr (4). One-electron reduction of 4 triggers N(2) binding to give (TPB)Co(N(2)) (2-N(2)) which is isostructural to previously reported [SiP(3)]Co(N(2)) (1-N(2)) ([SiP(3)] = tris-(o-diisopropylphosphinophenyl)silyl). Both 1-N(2) and 2-N(2) react with 1 atm H(2) to generate thermally stable H(2) complexes 1-H(2) and 2-H(2), respectively. Both complexes are characterized by a suite of spectroscopic techniques in solution and by X-ray crystallography. The H(2) and N(2) ligands in 2-H(2) and 2-N(2) are labile under ambient conditions and the binding equilibria are observable by temperature-dependent UV/vis. A van't Hoff analysis allows for the ligand binding energetics to be determined (H(2): ΔH(o) = -12.5(3) kcal mol(-1) and ΔS(o) = -26(3) cal K(-1) mol(-1); N(2): ΔH(o) = -13.9(7) kcal mol(-1) and ΔS(o) = -32(5) cal K(-1) mol(-1)).  相似文献   

20.
A series of Co(II), Cu(II), Y(III), Zr(IV), La(III), and U(VI) complexes derived from 2-(2-hydroxybenzylidinemine)-benzoic acid (L) ligand were synthesized. The mode of bonding of L and the structure of its metal complexes were investigated using different analytical and spectral tools (FT-IR, UV–Vis, 1H NMR, mass, and XRD). The ligand chelated with the metal ions as a neutral bidentate through oxygen and azomethine nitrogen atoms. All metal complexes adopted octahedral geometry with characteristic color for metal ions. The results of magnetic moment measurements supported paramagnetic for some complexes (Co(II) and Cu(II)) and diamagnetic phenomena for the other complexes. The thermal decomposition of the ligand along with its metal complexes was explained. The molar conductance values of all complexes in (DMF) were found in the range 154.50 to 250.20 S cm2 mol−1 at room temperature. The activation thermodynamic parameters, such as E*, ΔH*, ΔS* and ΔG*, were calculated from the DTG curves using Coats–Redfern (CR) and Horowitz–Metzeger (HM) methods at n = 1 or n ≠ 1. The nematicidal activity of the synthesized L and their metal complexes was screened.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号